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Abstract

We investigate the peculiar properties of information theory when all random vari-

ables involved are linear functions of a given source endowed with the structure

of a Z/2Z-vector space. We describe the coded caching problem and review the

progress made in particular cases of the problem. We devise a new caching scheme

for a special instance of the problem and extend some approaches in the coded

caching literature to the linear case such that we can use our results in linear alge-

bra to drive new lower bounds. We show one example within coded caching, with

the linearity assumption, where our results in information theory lead to stronger

bounds. Our results infer certain “qualitative” aspects of caching schemes, using

the information they must contain, rather than giving a complete analysis of such

schemes.
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Lay Summary

Studying measures of information of distributions associated with random vari-

ables is fundamental to information theory. With the assumption that the random

variables follow a particular linearity constraint, we can study information theory

with techniques from linear algebra. This assumption allows one to quantify mea-

sures of information between random variables that are not present in the current

literature. In this work, we demonstrate the properties of this linear information

theory.

Further, we apply our results to a practical problem in network engineering

called coded caching. Broadly speaking, coded caching asks: what information

should be stored in the nodes of a network such that a central server can broadcast

the least amount of information? Is there a lower bound on the information content

of the server broadcast? We introduce a different approach to coded caching that

improves the current lower bounds under certain assumptions for a specific instance

of the problem.
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Chapter 1

Introduction

In this thesis we develop some foundations of linear algebra to create new tools

in information theory one might call linear information theory. We consider a

source of information that is described as a certain number of bits, and a problem

that involves random variables of this source. We will show that if each random

variable is linear, i.e., can be expressed as a set of linear functions of these sets of

bits, then certain concepts result in seemingly new information theory equalities

and inequalities; our main result concerns a fundamental invariant of three linear

random variables—their discoordination. This discoordination is, more generally,

a fundamental invariant of any three subspaces of a finite-dimensional vector space

over an arbitrary field.

We concretely tie these tools to give a new lower bound in a special case of

an open question in an area known as coded caching. Our form of the problem

is a mild restriction of the original. Our bounds in coded caching will use the

aforementioned discoordination. For the rest of this chapter we summarise our

main ideas and results.

1.1 The Linearity Assumption
In information theory, a random variable is defined as a map Y : S →Y where S is

a finite set with a probability measure P : S →R and Y is a finite set. If we assume

that both S and Y are finite-dimensional F-vector spaces and Y is a linear map,
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then Y can be identified with a unique linear subspace, U , in the dual space of S.

We refer to U as the linear random variable corresponding to Y . In this case, for

F= Z/2Z and a uniformly distributed Y we have

H2(U) := H2(Y ) = dim(U),

where H2(Y ) denotes the base 2 entropy of the random variable Y and we define

H2(U) to be equal to H2(Y ). Furthermore, for random variables Y1 and Y2 with the

same assumptions as above and corresponding linear random variables U1,U2 ⊂ S∗,

we have

H2(U1,U2) := H2(Y1,Y2) = dim
(
Span(U1,U2)

)
,

where we define H2(U1,U2) to equal H2(Y1,Y2). This linearity assumption is the

bridge between information theory and the linear algebra developed in this work.

In essence, linear information theory is when quantities such as entropy and mutual

information can be represented in relation to the dimension of linear subspaces.

1.2 Main Results in Linear Algebra
We define I(Y1;Y2) and I(Y1;Y2;Y3) as the usual two-way and three-way mutual

information of the random variables Y1,Y2,Y3; namely

I(Y1;Y2) = H(Y1)+H(Y2)−H(Y1,Y2),

I(Y1;Y2;Y3) = I(Y1;Y2)+ I(Y1;Y3)− I(Y1;Y2,Y3).

If Y1,Y2,Y3 follow the linearity assumption from Subsection 1.1, then U1,U2,U3 are

their respective corresponding linear random variables which are linear subspaces

of an ambient finite-dimensional vector space, U , and

I(Y1;Y2) = I(U1;U2), I(Y1;Y2;Y3) = I(U1;U2;U3).

The linear algebra we develop generalizes what is often called the “dimension

formula,” [2, 6] which states,

dim(U1 ∩U2) = dim(U1)+dim(U2)−dim(U1 +U2),
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here U1+U2 denotes the sum (equal to the span) of U1 and U2 in the ambient vector

space U . Of course, the vector spaces U1 ∩U2 and U1 +U2 are not intrinsic to the

isomorphism class U1 and U2, but depend on their relation to the ambient vector

space. The dimension formula shows I(U1;U2) equals dim(U1 ∩U2).

In contrast to the dimension formula, it is well known that I(U1;U2;U3) does

not generally equal dim(U1 ∩U2 ∩U3), see Exercise 9, Section 3.3 on page 51 of

Jänich [6]. Equality does hold if the U1,U2,U3 are coordinated in the sense that

they have a coordinating basis, meaning a basis, X , of U , such that for i = 1,2,3

the vectors X ∩Ui = {x ∈ X |x ∈Ui} span Ui.

A simple example where I(U1;U2;U3) does not equal dim(U1 ∩U2 ∩U3) is

where U = F2, for an arbitrary field F, and

U1 = Span(e1), U2 = Span(e2), U3 = Span(e1 + e2), (1.2.1)

here e1,e2 are the standard basis vectors, in which case dim(U1 ∩U2 ∩U3) = 0 but

I(U1;U2;U3) =−1.

Fundamentally, we show (1.2.1) is essentially the only example where

I(U1;U2;U3) does not equal dim(U1 ∩U2 ∩U3).

More precisely, if U1,U2,U3 ⊂ U are three subspaces of a finite dimensional

F-vector space, U , then we may decompose U as a direct sum of subspaces U1 and

U2, such that the restriction of U1,U2,U3 to U1 are coordinated there, and there is

an isomorphism ι : U2 → F2 ⊗Fm for some m ≥ 0, under which ι applied to the

restriction of the U1,U2,U3 to U2 is

ι

(
U1
∣∣
U2

)
= Span(e1)⊗Fm,

ι

(
U2
∣∣
U2

)
= Span(e2)⊗Fm,

ι

(
U3
∣∣
U2

)
= Span(e1 + e2)⊗Fm.

(1.2.2)

The integer m is uniquely determined and what we define as the discoordination

of U1,U2,U3, denoted DisCoordU (U1,U2,U3); one can give a number of equivalent

definitions of this integer m.

In addition to the discoordination of three subspaces of an ambient vector
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space, we give some theorems on families of subspaces that are coordinated, and

study how DisCoordU (U1,U2,U3) changes when replacing U with a quotient space,

U/W , of U , whereupon we consider the images of the Ui in this quotient space,

i.e., we replace Ui with the equivalence classes of Ui +W (or [Ui]W ) and consider

DisCoordU/W ([U1]W , [U2]W , [U3]W ).

1.3 Expressiveness of Linear Information Theory
Linear information theory seems more expressive than classical information theory,

in that for linear random variables U1,U2,U3 ⊂ U , we have

I(U1;U2;U3) = dim(U1 ∩U2 ∩U3)−DisCoordU (U1,U2,U3).

With the linearity assumption we can express the “non-negative” and “non-

positive” parts of the mutual information among three subspaces.

Furthermore, we are able to quantify dimU/U3([U1∩U2]U3), which is the dimen-

sion of the image of U1 ∩U2 in U/U3. This is not always equal to I(U1;U2 |U3), as

in our context we have

I(U1;U2|U3) = dimU/U3([U1]U3 ∩ [U2]U3),

which is the dimension of the intersection of the images of U1 and U2 in U/U3.

As far is we know, it is not possible to express the following quantities in classical

information theory

H(U1∩U2∩U3) := dim(U1∩U2∩U3), HU/U3(U1∩U2) := dimU/U3([U1∩U2]U3).

1.4 Overview of Coded Caching
The second part of this thesis shows how one can apply the discoordination of three

subspaces and improve upon the current results in the “easiest” open problem in a

class of problems in information theory known collectively as coded caching.

What makes this prototypical problem in this field intriguing—its applica-

tion to network engineering aside—is that with minor simplifications it becomes
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a mathematical puzzle, and there have been several different mathematical ap-

proaches to tackle this problem.

The easiest open problem in which we were able to apply our results from

linear algebra can be informally stated as such: Consider three students, S1,S2,S3

in a course, each of whom must write an essay for a course, each essay requiring

the specialized knowledge that can be found in exactly one book in the university’s

electronic library. Each book is written in a binary alphabet, consisting of F bits of

information. At Tuesday noon, the instructor has not decided on the essay topics,

but has decided on the three books, B1,B2,B3, which the topics will be based on;

the instructor posts the list of these three books at noon, and intends to post the

list of essays the next day at noon. Tuesday night, is a time of “low usage” on

the network, meaning each student can download all three books and perform any

calculations they wish, but by 9 am on Wednesday they can only devote MF ≤ 3F

bits of storage on their laptops, for some real number M. The instructor posts the

essay topics at Wednesday noon, which is a time of “high usage” of the network;

at this point, each student immediately chooses an essay topic (or the topics could

be assigned randomly by the instructor, etc.) and broadcasts their choice of essay

(in actuality the book corresponding to the essay topic) to the library; hence the

library receives a function σ : {S1,S2,S3} → {B1,B2,B3} with σ(Si) denoting the

book required by student Si. Each student wants to begin working on their essay

on Wednesday afternoon, however, due to high network usage, the library can only

broadcast RF ≤ 3F bits of information, for some real number R. The question is

for which values of R do there exist Z1,Z2,Z3, each {0,1}3F → {0,1}MF , with Zi

representing what student Si stores in their cache, such that for any σ there exist

a function gσ : {0,1}3F → {0,1}RF , such that for each Zi and gσ , student Si can

determine all F bits in the book σ(Si).

1.5 Thesis Organization
This thesis is organized as follows:

In Chapter 2, we review the notation and linear algebra concepts used in the

work. We formalize the linearity assumption relating coded caching to our results

in linear algebra. We give a proof of the dimension formula while highlighting its

5



relation to our results in linear algebra.

In Chapter 3, we formally define “discoordination” and state our main results

about coordination and discoordination. This chapter establishes properties of

(dis)coordination and proves the main results.

In Chapter 4, we formally state the coded caching problem and review the

relevant literature. We build upon the work done by Tian (in [9]) regarding a small

instance of the coded caching problem and derive a new bound using his approach.

We present a new caching scheme in Section 4.6 which achieves a new memory-

rate pair not present in the literature. Lastly, we use our results from Chapter 3 to

get a stronger bound for a specific instance of the coded caching problem.

In Chapter 5, we give an overview and suggest directions for future research.

Lastly, the author of this thesis attempts to give the context and story behind this

work in Section 5.3.
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Chapter 2

Linear Algebra and Information
Theory Preliminaries

In this chapter, we will give some basic linear algebra notation and conventions

used to define “coordination” and “discoordination” of subspaces of a fixed am-

bient vector space. We refer to [2, 6] for basic notions in linear algebra, quotient

vector spaces, etc. We will briefly review these as needed. We also review some

relevant concepts from information theory and define linear random variables.

2.1 Set Theoretic Notation
We use Z and R to respectively denote the integers and the real numbers. We use

N to denote the natural numbers {1,2, . . .}, and for n ∈ N we use [n] to denote

{1, . . . ,n}. If A,B are sets we use A \B to denote the set difference of A and B,

meaning A\B = {a ∈ A | a /∈ B}.

2.2 Inequality Summation Principle
The following trivial proposition is used in a number of arguments in this work

and is surprisingly useful (it is the idea behind complementary slackness in linear

programming), we refer to it as the “Inequality Summation Principle.”
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Proposition 2.2.1. For m ∈ N, consider m inequalities

s1 ≤ t1, · · · , sm ≤ tm (2.2.1)

that hold for real numbers s1, . . . ,sm and t1, . . . , tm, then

s1 + · · ·+ sm ≤ t1 + · · ·+ tm, (2.2.2)

and equality holds in (2.2.2) iff equality holds in all the inequalities in (2.2.1).

Proof. The proof is immediate: if equality holds in all inequalities of (2.2.1), then

it holds in (2.2.2); otherwise, at least one inequality in (2.2.1) is strict, whereupon

(2.2.2) must be strict.

2.3 Algebra Notation

2.3.1 Direct Sum and ⊕

In mathematics, ⊕ usually denotes the direct sum of vector spaces. However, in the

coded caching literature, ⊕ is usually used for the addition of vectors in a vector

space over the field F= Z/2Z. In order to avoid confusion, we will use ⊕ for the

direct sum of vector spaces and keep the coded caching convention unchanged.

Let U1,U2 be finite dimensional subspaces of a vector space U over F= Z/2Z
with dim(U1) = dim(U2), and let µ : U1 → U2 be an isomorphism. Then we use

U1 ⊕µ U2 to denote the subspace of U consisting of all vectors u1 + µ(u1) with

u1 ∈ U1. Often µ will be understood (or unimportant), in which case we write

U1 ⊕U2. Hence U1 ⊕U2 always connotes that there is an understood isomorphism

U1 →U2. In our case these isomorphisms, such as those in Lemma 4.5.2 are built

by choosing an ordered basis a1, . . . ,ak for U1 and another b1, . . . ,bk for U2, and

picking µ : U1 →U2 as the unique linear map µ(ai) = bi for i ∈ [m].

Similarly, if U1,U2,U3 are finite dimensional subspaces of a vector space U
over F= Z/2Z and µi : U1 →Ui are isomorphisms for i = 2,3, then

U1 ⊕µ2 U2 ⊕µ3 U3

8



denotes the subspace of U given by all vectors u1 +µ2(u1)+µ3(u1) with u1 ∈U1.

We will use this notation in Lemma 4.5.2 and the discussion that follows it in

Chapter 4.

2.3.2 F-Universes

Definition 2.3.1. Let F be an arbitrary field. By an F-universe, U , we mean a

finite-dimensional F-vector space. By the term “F-universe,” without mention of

F, we understand that F is an arbitrary field.

In this work the field F and F-universe, U , are generally fixed or, at least, un-

derstood in context. Hence notions such as “a subspace of U” and its “dimension”

can be used unambiguously. When we are working with more than one ambient

vector space we will use dimU (U) to denote the dimension of the subspace U in U .

At times we use results that hold when the ambient vector space U can be

infinite dimensional; in this case we use the term “F-vector space,” and, similarly,

we understand F to be an arbitrary field unless explicitly mentioned otherwise.

However, in this work we mostly limit ourselves to ambient vector spaces, U , that

are finite dimensional.

2.3.3 Sum and Span

If A,B are subsets of an F-vector space, U , the sum of A and B refers to the set

A+B = {a+b | a ∈ A,b ∈ B}; (2.3.1)

if U1,U2 ⊂ U are subspaces, then so is U1 +U2; we similarly define S1 + · · ·+ Sm

for any subsets S1, . . . ,Sm of U . If S1, . . . ,Sm are subsets of U , we use

Span(S1, . . . ,Sm)

to denote the span of S1, . . . ,Sm; if S1, . . . ,Sm are subspaces, then this span equals

S1 + · · ·+Sm.

Definition 2.3.2. For an F-vector space, U , let Ind(U) denote the set of all sets

of linearly independent vectors in U , meaning for any X ∈ Ind(U), X is a set of

9



linearly independent vectors in U that spans a subspace of dimension |X |.

2.4 Quotient Space and Relative Basis Conventions
First we recall the usual notion of a quotient space of vector spaces; see [2, 6] for

details. For an F-universe, U , let u1,u2 ∈ U be vectors, and W ⊂ U be a subspace.

By a W-coset of U we mean any set of the form u+W where u ∈ U and + as

in (2.3.1); it is convenient to denote u+W by [u]W , and we use U/W to denote

the set of all W -cosets. We have that u1 +W = u2 +W iff u1 − u2 ∈ W , so one

can view U/W as the set of equivalence classes under the equivalence u1 ∼ u2 iff

u1 − u2 ∈ W . It is easy to check that the vector space structure on W and U gives

rise to one on U/W , and that

dim(U/W ) = dim(U)−dim(W ).

If Y ⊂ U is any subset of U , we use the notation [Y ]W to denote the set of W -

cosets Y +W , viewed as a subset of U/W ; we call [Y ]W the image of Y in U/W

(used in Section 1.2); hence if y∈Y , then [{y}]W is the one element set [y]W ∈ [Y ]W .

If U is an F-universe and W ⊂ U is some subspace in U , part of our methods

examines what happens to certain subspaces of U when we consider their image in

U/W . Further, if U ⊂ U is another subspace, then [U ]W is a subspace of U/W , but

(we can easily check that) [U ]W is isomorphic to the image of U in U/(U ∩W ).

Hence

dimU/W ([U ]W ) = dimU (U)−dimU (U ∩W )

which equals dim(U)− dim(W ) only when W ⊂ U . At times we write U/W to

denote the image of U in U/W . In some instances, for ease of notation we may

write dim(U/W ), dimU/W (U), or dimU/W ([U ]) instead of dimU/W ([U ]W ).

Definition 2.4.1. Let W ⊂ U be subspaces of a vector space, U , such that

dim(W ) = m and dim(U) = n. We say that a subset, Y = {y1, . . . ,yn−m}, of U is a

basis of U relative to W if the image of Y in U/W , i.e., [Y ]W = {y1+W, . . . ,yn−m+

W}, is a basis of the image of U in U/W (i.e., [U ]W ).

By Definition 2.4.1 we have that, if X = {x1, . . . ,xm} is any basis for W , then

Y = {y1, . . . ,yn−m} is a basis of U relative to W iff X ∪Y is a basis for U . While
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we may think of Y as what we add to X to complete the basis, the above definition

shows that our choice of Y depends only on W = Span(X) and not X itself.

2.5 Independent Subspaces, Decompositions, and
Factorization

The notion of the linear independence of subspaces of a vector space is not a stan-

dard one, even though it likely occurs implicitly in the literature.

Consider subspaces U1, . . . ,Um of an F-universe, for each i ∈ [m], let Xi be

a basis for Ui and ui ∈ Ui. Then each vector in U1 + · · ·+Um can be written as

u1 + · · ·+um, and hence lies in the span of X1 ∪·· ·∪Xm. Therefore,

dim(U1 + · · ·+Um)≤ |X1 ∪·· ·∪Xm| ≤ |X1|+ · · ·+ |Xm|,

consequently

dim(U1 + · · ·+Um)≤ dim(U1)+ · · ·+dim(Um); (2.5.1)

furthermore, strict inequality holds in one of two cases:

1. the X1, . . . ,Xm are not distinct; or

2. some proper subset of X1 ∪·· ·∪Xm also spans U1 + · · ·+Um.

Both cases imply that for some i ∈ [m], and some x ∈ Xi, x can be expressed as a

linear combination of the vectors in Xi \{x} and the remaining X j such that j ̸= i.

Since the vectors in each of the bases are linearly independent, this expression

leads to an equation

u1 + · · ·+um = 0 and ui ̸= 0,

where ui ∈Ui for all i∈ [m]. Conversely, if equality holds in (2.5.1), then X1, . . . ,Xm

are necessarily distinct and their union is a linearly independent set that spans U1+

· · ·+Um; hence this union comprises a basis for U1+ · · ·+Um. There are numerous

equivalent ways in which (2.5.1) holds with equality, they are minor variants of

conditions given in the following definition.
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Definition 2.5.1. Let U1, . . . ,Um be subspaces of an F-universe, U . We say that

U1, . . . ,Um are linearly independent if any of the following conditions hold.

1. For all u1, . . . ,um with ui ∈Ui, if u1+ · · ·+um is 0, then ui = 0 for all i ∈ [m].

2. Any u ∈U1+ · · ·+Um has a unique representation as a sum u = u1+ · · ·+um

with ui ∈Ui.

3. For any bases X1, . . . ,Xm of U1, . . . ,Um respectively, the X1, . . . ,Xm are mutu-

ally disjoint and X1 ∪·· ·∪Xm is a basis for U1 + · · ·+Um ⊂ U .

4. There exist bases X1, . . . ,Xm of U1, . . . ,Um respectively, such that the

X1, . . . ,Xm are mutually disjoint and X1 ∪ ·· · ∪Xm is a basis for U1 + · · ·+
Um ⊂ U .

5.

dim(U1)+ · · ·+dim(Um) = dim(U1 + · · ·+Um). (2.5.2)

We note that condition (5) makes use of the fact that U is finite dimensional,

whereas (1)–(4) above are equivalent when U is any F-vector space such that any

subspace of U has a basis1.

Example 2.5.2. If u1, . . . ,um are vectors in some vector space, the vectors are lin-

early independent iff all these vectors are nonzero and Span(u1), . . . ,Span(um) are

linearly independent subspaces. Thus the classical notion of linearly independent

vectors can be described in terms of the linear independence of one-dimensional

subspaces.

Example 2.5.3. If B1, . . . ,Bm is any partition of a set of linearly independent vec-

tors in a any vector space, then their spans are linearly independent subspaces.

Just as in Definition 2.5.1 we can easily check that the three conditions in the

following definition are equivalent.

Definition 2.5.4. By a decomposition of a subspace U ⊂ U of an F-universe, U ,

we mean subspaces U1, . . . ,Um ⊂ U such that any of these equivalent conditions

hold.
1Such a condition is typically assumed in linear algebra, although depending on the vector spaces

this may require a set theoretic assumption such as transfinite induction.
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1. Each u ∈ U can be written uniquely as u1 + · · ·+ um where ui ∈ Ui for all

i ∈ [m].

2. The U1, . . . ,Um are linearly independent and their span is all of U .

3. The map U1⊕·· ·⊕Um → U defined by (u1, . . . ,um) 7→ u1 + · · ·+ um is an

isomorphism.

For some subspace A ⊂U , the first condition in Definition 2.5.1 implies that if

U1, . . . ,Um are any linearly independent subspaces, then so are A∩U1, . . . ,A∩Um.

Definition 2.5.5. Let U1, . . . ,Um be a decomposition of a subspace U of some F-

universe. We say that a subspace A ⊂U factors through this decomposition if any

of these equivalent conditions hold.

1. A∩U1, . . . ,A∩Um is a decomposition of A.

2. Any vector in A can be written as a unique sum of vectors in A∩U1, . . . ,A∩
Um.

3. The span of A∩U1, . . . ,A∩Um is all of A.

4.
m

∑
i=1

dim(A∩Ui) = dim(A).

The following proposition likely occurs in a number of places in the literature.

Proposition 2.5.6. If A,B ⊂ U factor through a decomposition U1, . . . ,Um of a

subspace, U, of some universe then A+B, A∩B also factor through this decompo-

sition.

Proof. For any i ∈ [m], by the dimension formula and since A∩Ui,B∩Ui are both

subspaces of (A+B)∩Ui we have

dim(A∩Ui)+dim(B∩Ui) = dim(A∩B∩Ui)+dim
(
(A∩Ui)+(B∩Ui)

)
≤ dim(A∩B∩Ui)+dim

(
(A+B)∩Ui)

)
.
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Summing this inequality over all over all i we have

dim(A∩B)+dim(A+B)≤
m

∑
i=1

dim(A∩B∩Ui)+
m

∑
i=1

dim
(
(A+B)∩Ui)

)
. (2.5.3)

Given that the (A∩B)∩Ui are linearly independent subspaces of A∩B, and the

(A+B)∩Ui are linearly independent subspaces of A+B, by (2.5.2) we have

m

∑
i=1

dim
(
(A∩B)∩Ui

)
= dim

( m

∑
i=1

(A∩B)∩Ui
)
≤ A∩B,

m

∑
i=1

dim
(
(A+B)∩Ui

)
= dim

( m

∑
i=1

(A+B)∩Ui
)
≤ A+B.

Summing the above two inequalities shows that (2.5.3) holds with equality.

From the above proposition we get the following useful consequence.

Theorem 2.5.7. Let U1, . . . ,Um be a decomposition of a subspace U of some uni-

verse. Say that each of the subspaces A1, . . . ,As ⊂ U factors through this decom-

position. Then any subspace that can be written as an expression involving + and

∩ and the A1, . . . ,As (and parenthesis) factors through this decomposition.

One can prove the above theorem by induction on the “size” of the expression

where by size we mean the number of the Ai, + , and ∩ present in the expression.

Similarly, note that if A,B factor through such a decomposition, then

dim(A/B) = dim
(
A/(A∩B)

)
= dim(A)−dim(A∩B)

=
m

∑
i=1

dim(A∩Ui)−
m

∑
i=1

dim(A∩B∩Ui) =
m

∑
i=1

dim
(
(A∩Ui)/(A∩B∩Ui)

)
.

Hence dim(A/B) can be computed by restricting both A and A∩B to each Ui, and

computing the dimension of the quotient space (A∩Ui)/(A∩B∩Ui) there.

Note that the definitions, proposition, and theorem stated in this section hold

when U is taken to be the whole F-universe, U . Meaning we can consider a de-

composition U1, . . . ,Um of U and restate all the above.
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2.6 Basis Exchange and Independent Subspaces
We use numerous variants of the basis exchange and basis extension principles (see

[6]). The following remark details what we need in subsequent chapters.

Remark 2.6.1. Let U be a subspace of any F-universe. Then

1. if U = Span(S) for some subset, S, of U , then some subset S′ ⊂ S is a basis

for U;

2. if X is a basis of U, X0 ⊂ X a subset, and Y any set of linearly independent

vectors with Span(X0) and Span(Y ) linearly independent, then there exists a

basis for U consisting of X0 ∪Y plus a subset of vectors from X \X0;

3. if X is a basis for U and Y a subset of linearly independent vectors in U,

then there is a basis of U of the form Y ∪X0 with X0 ⊂ X (this is the standard

basis exchange principle).

2.7 The Dimension Formula and Its Proof
Let us recall the dimension theorem and its proof; for more detail, see Theorem

3 in Section 3.2 (page 49) of Jänich [6] (called there the “Dimension formula for

subspaces”). This illustrates the idea behind our main technique to show that cer-

tain subspaces of a universe are coordinated (we formally define this notion in

Chapter 3).

The dimension formula states that if U1,U2 ⊂U are subspaces of an F-universe,

U , then

dim(U1 ∩U2)+dim(U1 +U2) = dim(U1)+dim(U2). (2.7.1)

The proof sketch is as follows:

1. let B0 be a basis for U1 ∩U2;

2. extend B0 (in an arbitrary fashion) to a basis B0 ∪B1 of U1;

3. extend B0 (in an arbitrary fashion) to a basis B0 ∪B2 of U2;

4. verify that B0,B1,B2 are disjoint and B = B0 ∪B1 ∪B2 is a linearly indepen-

dent set that spans U1 +U2;
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5. conclude dim(U1 ∩U2) = |B0|,dim(U1 +U2) = |B0|+ |B1|+ |B2| and that

dim(Ui) = |B0|+ |Bi| for i = 1,2

Our main theorem about coordination generalizes the above verification, let

us summarize how this is done. B1 and B2 are extension pieces of B0 and hence

disjoint from B0. If B1 and B2 intersect, say at a vector, v, then v ∈ (U1 ∩U2) =

Span(B0). Therefore, v cannot be an extension piece from B0 to B0 ∪B1 (or B0 ∪
B2). Finally, if B = B0 ∪B1 ∪B2 are not disjoint or not linearly independent, then

there is a nontrivial solution to the equation

v0 + v1 + v2 = 0

where each vi ∈ Span(Bi) and “nontrivial” means that at least one of v0,v1,v2 is

nonzero, hence at least two of v0,v1,v2 are nonzero. This leads to the following

contradiction: assuming such a nontrivial solution, at least one of v1,v2 is nonzero,

say v1 ̸= 0, then we have v2 ∈U2 and v0 ∈ (U1 ∩U2)⊂U2, so both v0,v2 ∈U2 and

as a result

v1 = −v0 − v2 ∈U2;

but since v1 ∈U1 this implies

v1 ∈U1 ∩U2

which is impossible since v1 is nonzero and a linear combination of vectors in B1,

v1 cannot lie in the span of B0 given that B1 is an extension piece of B0.

We took an equation v0 + v1 + v2 = 0, wrote it as v1 =−v0 − v2, and obtained

the result v1 ∈ U1 ∩U2 which was additional information about v1 that lead to a

contradiction. We will use such arguments in Section 3.3. Leveraging the gen-

eralization of such arguments is the main motivation behind our definition of the

greedy algorithm (Subsection 3.2.9) and quasi-increasing sequences of subspaces

(Subsection 3.3.1).

2.7.1 The Dimension Formula in Infinite Dimensions

The proof of the dimension formula in Section 2.7 has an infinite dimensional

version which is also valid for U1,U2 ⊂ U where U is an F-vector space, and one
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or both of U1,U2 are infinite dimensional, namely

0 →U1 ∩U2 →U1⊕U2 →U1 +U2 → 0

is an exact sequence, meaning that the kernel of any arrow equals the image of the

preceding arrow [1].

It is therefore likely that some of our discussion regarding subspaces of an

ambient F-universe hold in greater generality. However, the above exact sequence

suggests to us that it is simpler to work out our results in the finite dimensional

case, and then see which results could have a useful infinite dimensional analog.

2.8 Linear Random Variables and a Review of
Information Theory

Throughout this section, F = Z/2Z is the finite field of two elements. Here we

review the usual notion of entropy and explain what we mean by a linear random

variable of an F-universe.

In classical information theory (see [4] for more detail), a source, S, is a finite

set with a probability measure P : S →R whose values are positive and sum to one(
we do not allow P(s) = 0 for any s ∈ S

)
. A random variable is defined as a map

Y : S →Y where Y is a finite set. For each y ∈ Y , we define

py = ∑
s∈Y−1(y)

P(s),

and we define its (base 2) entropy to be

H(Y ) = H2(Y ) = ∑
y∈Y

py log2(1/py),

where py log2(1/py) is taken to be 0 if py = 0.

If Y is uniformly distributed in the sense that py is independent of y, it follows

that py = 1/|Y|, and

H(Y ) = log2(|Y|). (2.8.1)
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Each random variable Y : S →Y induces a partition of S, namely

S =
⋃

y∈Y
Y−1(y).

Another random variable Y ′ : S →Y ′ is equivalent to Y if it gives the same parti-

tion of S; this holds iff there is an isomorphism µ : Image(Y ) → Image(Y ′) such

that Y ′ = µ ◦Y . Meaning, if Y1, . . . ,Ym are equivalent, respectively, to Y ′
1, . . . ,Y

′
m,

then any expression involving the joint entropy, mutual information, conditional

entropy, etc., involving the Y1, . . . ,Ym equals that when each Yi is replaced with Y ′
i .

If Y : S →Y is any random variable, then Y is equivalent to the random variable

where we discard any y ∈ Y with py = 0; since we assume that each s ∈ S has

positive probability, this is the same as discarding all elements of Y that are not

in the image of Y . This amounts to replacing Y with the map it induces from S to

Image(Y ), which is a surjective map; we call this new random the surjective version

of Y . If Y1,Y2 are surjective random variables, Yi : S →Yi, then Y1 is equivalent to

Y2 iff there exists a bijection µ : Y1 →Y2 with Y2 = µ ◦Y1.

Definition 2.8.1. Let F= Z/2Z, and let S be an F-universe. We view S as a proba-

bility space with the uniform distribution, i.e., each element occurs with probability

1/|S|= 1/2n where n = dim(S). By a classical linear random variable we mean a

linear map Y : S →Y where Y is an F-universe.

Proposition 2.8.2. For any classical linear random variable Y : S→Y , there exists

an equivalent random variable which is a quotient map Ỹ : S → S/A where A =

ker(Y ) = ker(Ỹ ). Furthermore,

H(Y ) = H(Ỹ ) = log2(|S/A|) = dim(S/A) = dim(S)−dim(A). (2.8.2)

Proof. Any linear map Y : S →Y factors uniquely as

S
f−→ S/ker(Y )

g−→Y,

with f surjective and g injective. Y is equivalent to its surjective form, and if Y

is surjective, then g is also surjective; in this case g : S/A →Y is a bijection, and

hence g gives an equivalence of the surjective form of Y and the map Ỹ : S → S/A

18



where ker(Y ) = A.

Since Ỹ is surjective and linear, it is uniform, using (2.8.1) we have

H(Y ) = H(Ỹ ) = log2(|S/A|),

(2.8.2) follows.

Proposition 2.8.3. If A1,A2 ⊂ S are two subsets of an F-universe, then the random

variables Yi : S → S/Ai are equivalent iff A1 = A2.

Proof. Yi partitions S into its Ai-cosets, one of which is Ai. Y1 and Y2 are equivalent

iff they induce the same partition; since A1,A2 both contain the zero in S, if Y1 and

Y2 are equivalent then A1 = A2. Conversely, if A1 = A2 then, S → S/Ai are the same

map and hence equivalent.

Recall that if L : V → W is a linear map, then the map on dual spaces,

L∗ : W ∗ → V ∗, has image equal to
(
V/ker(L)

)∗ viewed as “it sits” in V ∗, i.e.,

viewed as the subspace of those elements of V ∗ that take ker(L) to zero. In partic-

ular, if S → S/A is a quotient map, then the image of the dual map is (S/A)∗ as it

sits in S∗, i.e., the elements of S∗ mapping all of A to zero (also referred to as the

annihilator of A).

Recall that if S is any F-universe and A ⊂ S is a subspace, then the annihilator

of A in S∗ is the set of elements of S∗ taking all of A to 0, which is a subspace of

dimension dim(S)− dim(A); similarly, if V ⊂ S∗, by the annihilator of V (in S)

we mean the elements of S that each element of V takes to zero, and that this is a

subspace of dimension dim(S)−dim(V ).

Definition 2.8.4. Let F = Z/2Z, and let S be an F-universe. By the universe

associated to S we mean the dual space U = S∗; by a linear random variable we

mean a subspace V ⊂U , to which we associate the classical linear random variable

Vclass : S → S/A where A is the annihilator of V in S, i.e.,

A = {s ∈ S | ∀ℓ ∈V, ℓ(s) = 0}.

Therefore, V equals the image of (S/A)∗ as it sits in S∗. We define the entropy of

V to be that of Vclass, i.e., H2(V ) = H2(Vclass).
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From the above definition we can, conversely, associate any classical linear

random variable to a unique linear random variable. For a classical linear ran-

dom variable, Y : S →Y , consider the equivalent classical linear random variable

Ỹ : S → S/ker(Y ) which is a quotient map. Then the unique linear random variable

associated to Y is Ylrv ⊂ S∗ where Ylrv is the image of
(
S/ker(Y )

)∗ as it sits in S∗,

i.e., the annihilator of ker(Y ) in S∗.

By above definition for a linear random variable, V ⊂ S∗, we have

H2(V ) = H2(Vclass) = dim(S/A) = dim
(
(S/A)∗

)
= dim(V ).

Hence the entropy of V is its dimension. Similarly, the entropy of a classical linear

random variable, Y , equals dim(Ylrv).

It will turn out to be far more convenient to think of a classical linear random

variable as its associated linear random variable.

The last thing to note is how joint random variables work in the linear case. If

Y1,Y2 are two random variables, then their joint random variable (Y1,Y2) denotes

the random variable that is the Cartesian product map

Y1 ×Y2 : S →Y1 ×Y2.

If S,Y1,Y2 are vector spaces and Y1,Y2 are linear maps, then Y1 ×Y2 becomes a

vector space and Y1 ×Y2 is a linear map.

Proposition 2.8.5. Let F=Z/2Z, and let S be an F-universe. Let V 1,V 2 ⊂U = S∗

be linear random variables, whose classical forms are V i
class : S → S/Ai where Ai

is the annihilator of V i in S. Then the linear random variable associated to the

classical random variable (V 1
class,V

2
class) is V 1 +V 2.

Proof. Since

ker
(
(V 1

class,V
2
class)

)
= ker(V 1

class ×V 2
class) = ker(V 1

class) ∩ ker(V 2
class)

and V i
class is a quotient map from S to S/Ai with kernel Ai we have

ker
(
(V 1

class,V
2
class)

)
= A1 ∩A2.
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Let V be the linear random variable associated to (V 1
class,V

2
class). Then V is the

annihilator of A1∩A2 as it sits in S∗ and has dimension equal to dim
(
S/(A1∩A2)

)
.

Since V i is the annihilator of Ai, each V i takes all of A1∩A2 to zero. Consequently,

(V 1 +V 2)⊂V . By the dimension formula

dim(V 1 +V 2) = dim(V 1)+dim(V 2)−dim(V 1 ∩V 2)

= dim(S/A1)+dim(S/A2)−dim(V 1 ∩V 2).

Since V 1 ∩V 2 takes both A1 and A2 to zero it is the annihilator of A1 +A2 and has

the same dimension as S/(A1 +A2), then above equality becomes

dim(V 1 +V 2) = dim(S/A1)+dim(S/A2)−dim
(
S/(A1 +A2)

)
= dim(S)+dim(A1)+dim(A2)+dim(A1 +A2)

= dim(S)−dim(A1 ∩A2) = dim
(
S/(A1 ∩A2)

)
.

Hence V 1 +V 2 and V have the same dimension. Since V 1 +V 2 ⊂ V , then V =

(V 1 +V 2).

By above proposition for linear random variables, V 1,V 2 ⊂ S∗, we have

H2(V 1
class,V

2
class) = H2(V 1,V 2) = dim(V 1 +V 2).

The chain rule of conditional entropy states for random variables X ,Y

H(X |Y ) = H(X ,Y )−H(Y ).

Using the chain rule we can define the conditional entropy of two linear random

variables, V 1,V 2 ⊂ S∗, in terms of their corresponding classical linear random vari-

ables, V 1
class,V

2
class, as such

H2(V 1 |V 2) = H2(V 1
class |V 2

class) = H2(V 1
class,V

2
class)−H2(V 2

class).

It follows that

H2(V 1 |V 2) = dim(V 1 +V 2)−dim(V 2),
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using the dimension formula we get

H2(V 1 |V 2) = dim(V 1)−dim(V 1 ∩V 2) = dimU/V 2
([

V 1]
V 2

)
.

In the context of coded caching, for a random variable Y : S →Y , both S and Y
are a F-universe with F= Z/2Z. So if Y is a classical linear random variable, then

its corresponding linear random variable, Ylrv ⊂ S∗, can be thought of as a linear

subspace in S (since S∗ ∼= S as S∗ also has the structure of an F-universe with the

same dimension as S).
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Chapter 3

Linear Information Theory

3.1 Coordination, Discoordination, and an Overview of
the Main Results

In this section, we define the notion of the “discoordination” of a collection of sub-

spaces of a universe, which is the focus of the linear algebra in this work. When a

collection of subspaces have zero discoordination, when they are “coordinated,” we

get simple formulas regarding the dimensions of such subspaces and the dimension

of subspaces obtained by applying +,∩ operations and taking quotients.

The fact that two subspaces are always coordinated but three subspaces are not

is known (see Exercise 9, Section 3.3 on page 51 of Jänich [6]). At the end of

this section, we state the main theorem regarding the decomposition of any three

subspaces of a universe into a coordinated part and a discoordinated part with a

remarkably simple structure.

3.1.1 Coordination

If X is a set of linearly independent vectors in an F-universe, U , and U ⊂ U is a

subspace, then X ∩U is a set of linearly independent vectors in U , and hence

dim(U)−|X ∩U | ≥ 0 (3.1.1)
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with equality iff X ∩U is a basis of U . This observation leads to a number of

definitions that are the focus of this chapter.

Definition 3.1.1. Let U1, . . . ,Um be subspaces of an F-universe, U . We say that a

set of vectors, X , in U coordinates U1, . . . ,Um if

1. X is a set of linearly independent vectors in U , and

2. for all i ∈ [m] we have

dim(Ui) = |X ∩Ui|,

or, equivalently, X ∩Ui is a basis for Ui (since X ∩Ui ⊂ X is a linearly inde-

pendent of vectors whose size equals the dimension of Ui).

If such an X exists, we say that U1, . . . ,Um are coordinated.

Proposition 3.1.2. If X coordinates subspaces U1,U2 of an F-universe, U , then X

also coordinates U1 ∩U2 and U1 +U2.

Proof. (An alternate proof is given in Subsection 3.1.2.) In view of (3.1.1), for any

X ∈ Ind(U) we have

|X ∩ (U1 +U2)| ≤ dim(U1 +U2), |X ∩ (U1 ∩U2)| ≤ dim(U1 ∩U2); (3.1.2)

X coordinates U1 +U2 and U1 ∩U2 iff both these inequalities hold with equality,

and the Inequality Summation Principle implies that equality holds in both iff their

sum,

|X ∩ (U1 +U2)|+ |X ∩ (U1 ∩U2)| ≤ dim(U1 +U2)+dim(U1 ∩U2), (3.1.3)

holds with equality. By (set theoretic) inclusion-exclusion we have

|X ∩ (U1 ∪U2)|+ |X ∩ (U1 ∩U2)|= |X ∩U1|+ |X ∩U2|,

since X coordinates U1,U2 we get that

|X ∩ (U1 ∪U2)|+ |X ∩ (U1 ∩U2)|= dim(U1)+dim(U2).
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From the dimension formula we know

dim(U1)+dim(U2) = dim(U1 +U2)+dim(U1 ∩U2),

therefore

|X ∩ (U1 ∪U2)|+ |X ∩ (U1 ∩U2)|= dim(U1 +U2)+dim(U1 ∩U2). (3.1.4)

However U1 ∪U2 is a subset of U1 +U2, and hence

|X ∩ (U1 +U2)|+ |X ∩ (U1 ∩U2)| ≥ |X ∩ (U1 ∪U2)|+ |X ∩ (U1 ∩U2)|, (3.1.5)

from (3.1.4) we have

|X ∩ (U1 +U2)|+ |X ∩ (U1 ∩U2)| ≥ dim(U1 +U2)+dim(U1 ∩U2).

This is the reverse inequality of (3.1.3), thus both hold with equality.

We remark that (3.1.5) shows any element of X ∩ (U1 +U2) must also lie in

U1 ∪U2.

It follows that if U is an F-universe and X ∈ Ind(U) coordinates a family of

subspaces, W , then X also coordinates any subspace obtained by a finite sequence

of spans and intersections of members of W .

Another observation is if U is an F-universe of dimension n, and X ∈ Ind(U),
then X contains at most n vectors and hence X coordinates at most 2n distinct

subspaces of U .

The essence of this chapter is to describe which subspaces U1, . . . ,Um are coor-

dinated, or, if not, to describe their “discoordination,” which measures the extent to

which they “fail to be coordinated.” Before discussing discoordination, let us give

a helpful way of thinking about coordinated subspaces.

3.1.2 Coordinate Subspaces

If F is a field, we use Fn to denote the usual product of n copies of F, and use

e1, . . . ,en to denote the standard basis vectors of Fn (hence ei is a vector with a 1 in
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the i-th coordinate and 0’s elsewhere). For a subset I ⊂ [n] where I = {i1, . . . , im}
for some m ≤ n, we set eI to be

eI = Span(ei1 , . . . ,eim)⊂ Fn;

hence eI is a subspace of dimension |I| = m which we call the I-coordinate sub-

space of Fn; consequently e /0 = {0} and e[n] = Fn. Note that if I,J ⊂ [n], then

eI + eJ = eI∪J, eI ∩ eJ = eI∩J . (3.1.6)

This gives us another view of coordination: if U is an n-dimensional F-universe

and X = {x1, . . . ,xn} is a basis of U , then there is a unique isomorphism f : U → Fn

of vector spaces such that xi ∈ U is taken to ei ∈ Fn. In this case a subspace W ⊂U
is coordinated by X iff f (W ) is a coordinate subspace in Fn.

We can reprove Proposition 3.1.2 from this perspective: let U1,U2 ⊂ U be co-

ordinated by X ∈ Ind(U); we may extend X to be a basis on all of U , which still

coordinates U1,U2. Now we have an isomorphism f : U → Fn; since an isomor-

phism of vector spaces preserves the operations +,∩, we have f (U1) = eI where

I ⊂ [m] consists of those i ∈ [m] such that ei ∈ f (U1 ∩X); similarly define J ⊂ [m]

such that f (U2) = eJ . In view of (3.1.6), and the fact that f−1 : Fn →U is another

isomorphism, preserving + and ∩, we have that

U1 +U2 = f−1(eI∪J), U1 ∩U2 = f−1(I ∩ J)

are coordinated by f−1(e1), . . . , f−1(en), which are the elements of X .

3.1.3 Discoordination and Minimizers

In this section we define a measure for “the extent to which given subspaces of a

universe may fail to be coordinated.”

Definition 3.1.3. Let U1, . . . ,Um be subspaces of an F-universe, U . If X ∈ Ind(U)
(i.e., X is a subset of linearly independent vectors in U), we define the discoordi-
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nation of U1, . . . ,Um with respect to X to be

DisCoordX(U1, . . . ,Um) =
m

∑
i=1

(
dim(Ui)−|X ∩Ui|

)
.

We define the discoordination of U1, . . . ,Um to be

DisCoord(U1, . . . ,Um) = min
X∈Ind(U)

DisCoordX(U1, . . . ,Um),

we call any X ∈ Ind(U) at which the above minimum is attained a minimizer of

U1, . . . ,Um.

In view of (3.1.1), U1, . . . ,Um are coordinated iff their discoordination equals

0, and, if so, then X is a minimizer of U1, . . . ,Um when X coordinates U1, . . . ,Um.

Note that in the above definition, if X ⊂ X ′ and X ′ ∈ Ind(U), then

DisCoordX(U1, . . . ,Um)≥ DisCoordX ′(U1, . . . ,Um).

It follows that if X is a minimizer of U1, . . . ,Um and not a basis of U , we can extend

X to obtain a basis X ′ of U such that X ⊂ X ′, where X ′ is also a minimizer of

U1, . . . ,Um. Hence there are always minimizers that are bases for U .

3.1.4 The Main Theorem Regarding Three Subspaces

Theorem 3.1.4. Let U1,U2,U3 be three subspaces of an arbitrary F-universe, U
and let S2 = (U1 ∩U2)+ (U1 ∩U3)+ (U2 ∩U3). Then the following non-negative

integers are equal:

1. DisCoord(U1,U2,U3);

2. the minimum of dim(U3)−|X ∩U3| over all X ∈ Ind(U) that coordinate U1

and U2;

3. the dimension in U/S2 of the space ([U1]S2 +[U2]S2)∩ [U3]S2 .

Furthermore, if m = DisCoord(U1,U2,U3), then there is a decomposition U1,U2 of

U through which U1,U2,U3 all factor,
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1. U1 ∩U1,U2 ∩U1,U3 ∩U1 are coordinated in U1, and

2. there is an isomorphism µ : U2 → F2×Fm which takes U1∩U2,U2∩U2,U3∩
U2, respectively to

Span(e1)⊗Fm, Span(e2)⊗Fm, Span(e1 + e2)⊗Fm.

After proving this theorem (proof given in Section 3.4), we will be able to write

a number of important formulas involving U1,U2,U3 in terms of their discoordina-

tion. Let us first state the general principle.

Definition 3.1.5. Let f = f (U1, . . . ,Um) be a formula that is an Z-linear combina-

tion of terms of the form dim(U ′/U ′′), where U ′,U ′′ are formulas in the operations

∩,+ and the variables U1, . . . ,Um (and parenthesis); hence f takes arbitrary sub-

spaces U1, . . . ,Um of some F-universe, U , and returns an integer. We say that f is a

balanced formula if f (U1, . . . ,Um) = 0 whenever U1, . . . ,Um are coordinated.

Corollary 3.1.6. Let f = f (U1,U2,U3) be a balanced formula. Then for any sub-

spaces U1,U2,U3 ⊂ U of a F-universe, U , we have

f (U1,U2,U3) = k DisCoord(U1,U2,U3),

where

k = f
(
Span(e1),Span(e2),Span(e1 + e2)

)
,

and e1,e2 are the standard basis vectors in F2 for any field F.

The above corollary is an immediate consequence of Theorem 3.1.4 and The-

orem 2.5.7 and the paragraph just below it, since

f (U1,U2,U3) =
2

∑
i=1

f (U1 ∩Ui,U2 ∩Ui,U3 ∩Ui),

where U1,U2 are the decomposition of U stated Theorem 3.1.4; thus in the equal-

ity above the i = 1 term vanishes since this term involves coordinated subspaces,

and the i = 2 term is isomorphic to the direct sum of m copies of F2, in which f

restricted to each copy equals k above.
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Corollary 3.1.7. Let U1,U2,U3 be three subspaces of an arbitrary F-universe, U .

Then DisCoord(U1,U2,U3) equals

1. m = dim(U1 ∩U2 ∩U3)− I(U1;U2;U3), where

I(U1;U2;U3) =dim(U1 +U2 +U3)

−dim(U1 +U2)−dim(U1 +U3)−dim(U2 +U3)

+dim(U1)+dim(U2)+dim(U3).

2. dim
(
U3 ∩ (U1 +U2)

)
−dim(U3 ∩U1)−dim(U3 ∩U2)+dim(U1 ∩U2 ∩U3).

3. dim
(
(U1+U3)∩(U2+U3)

)
−dim(U3)+dim(U1∩U2∩U3)−dim(U1∩U2).

Corollary 3.1.7 will be shown in Section 3.6, specifically we will show all

formulas in the corollary are balanced. In Subsection 3.6.1 we will show other

equalities involving the discoordination of three subspaces in some quotient space.

3.1.5 Discoordination in Quotient Spaces

Let U1, . . . ,Um be subspaces of an F-universe, U . For a subspace W ⊂ U , it is

interesting to consider the relationship between DisCoord(U1, . . . ,Um) in U , and

the discoordination of the images of U1, . . . ,Um in the quotient universe U/W ,

DisCoordU/W([U1]W , . . . , [Um]W
)

(where we use the superscript U/W to emphasize that we consider the [Ui]W =

Ui +W as subspaces of the quotient space U/W ).

Let us give examples that show that this new discoordination, in “passing from

U to U/W ,” can decrease or increase.

If W = U , then U/W is the zero dimensional universe, where the discoordi-

nation is always zero; suppose U1, . . . ,Um are not coordinated (e.g., m = 3 and

U1,U2,U3 are, respectively, the spans of e1,e2,e1 +e2 in F2), then the discoordina-

tion can decrease in passing from U to U/W (in this example the discoordination

decreases from 1 in U to 0 in U/W ).

On the other hand, if U1,U2,U3 are, respectively, the spans of e1,e2,e3 in F3,

then they are coordinated. However in U/W with W = Span(e1+e2−e3), we have
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that [e1]W and [e2]W are, respectively, bases for [U1]W and [U2]W , while also forming

a basis for the quotient space U/W ; additionally, [e1 + e2]W is a basis for [U3]W ,

this means [U1]W , [U2]W , [U3]W form the discoordination example from (1.2.1) and

cannot be coordinated. Hence U1,U2,U3 can be coordinated in U but have positive

discoordination in U/W .

Theorem 3.1.4 already implies1 that for S2 = (U1∩U2)+(U1∩U3)+(U2∩U3),

DisCoordU (U1,U2,U3) = DisCoordU/S2
(
[U1]S2 , [U2]S2 , [U3]S2

)
.

In Theorems 3.2.10 and 3.2.11 we show a more general result related to the equality

above for arbitrarily many subspaces. The following is another useful property of

the discoordination of three subspaces.

Theorem 3.1.8. Let U1,U2,U3,W be four subspaces of an arbitrary F-universe, U ,

such that W ⊂ (U1 ∩U2). Then,

DisCoordU (U1,U2,U3) = DisCoordU/W([U1]W , [U2]W , [U3]W
)
.

The discoordination of U1,U2,U3 in U is the same as that of the images of U1,U2,U3

in the quotient U/W.

A proof for Theorem 3.1.8 is given in Section 3.5.

3.1.6 The Discoordination Formula

Some of the results in this work are based on a detailed description of how to build

minimizers for subspaces U1, . . . ,Um in a universe. This description gives an in-

teresting “formula” for discoordination which we will use to prove Theorem 3.1.8.

Both results are stated as a single theorem, namely Theorem 3.2.9. In an effort to

present the important results at the beginning and not loose sight of them in the sea

of proofs that follow, let us separately state the discoordination formula.

Theorem 3.1.9. Let U1, . . . ,Um be subspaces of an F-universe, U . For each k ∈ [m],

1This equality is also implied by Theorem 3.2.11 and the full statement of Theorem 3.1.4 is not
necessary for the implication.
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let Sk be the span of all intersections of any k of U1, . . . ,Um, i.e.,

Sk = Sk(U1, . . . ,Um) = ∑
1≤i1<...<ik≤m

Ui1 ∩ . . .∩Uik

(see Definition 3.2.6). Then

DisCoord(U1, . . . ,Um) =
m

∑
i=1

dim(Ui)−
m

∑
i=1

dim(Si).

What makes this theorem difficult to apply is that one needs information about

S2, . . . ,Sm, which is detailed information based on U1, . . . ,Um; usually it is only

S1 =U1 + · · ·+Um that tends to be clear in applications.

3.1.7 Factorization and Discoordination

Let us describe an application of Theorem 3.1.9 based on factorization. This will

lead into another important property of discoordination. By Theorem 2.5.7 and

Theorem 3.1.9 we have the following important equality.

Theorem 3.1.10. Let A1, . . . ,Am be subspaces of an F-universe U that all factor

through a decomposition U1, . . . ,Ur of U . Then

DisCoordU (A1, . . . ,Am) =
r

∑
i=1

DisCoordUi
(
A1 ∩Ui , . . . , Am ∩Ui

)
.

Proof. Theorem 2.5.7 implies that the subspaces S1, . . . ,Sm of Theorem 3.1.9 can

be computed as the S1, . . . ,Sm of A1 ∩Ui, . . . ,Am ∩Ui and summed.

Formally, by Theorem 3.1.9 we have

DisCoord(A1, . . . ,Am) =
m

∑
k=1

(
dim(Ak)−dim(Sk)

)
,

where

Sk = Sk(A1, . . . ,Am) = ∑
1≤i1<...<ik≤m

Ai1 ∩ . . .∩Aik .
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Since the Ak factor through the decomposition, for k ∈ [m]

dim(Ak) =
r

∑
i=1

dim(Ak ∩Ui).

By Theorem 2.5.7 the Sk also factor through the decomposition and

Sk = ∑
1≤i1<...<ik≤m

r

∑
j=1

(
(Ai1 ∩ . . .∩Aik)∩U j

)
,

which implies

Sk =
r

∑
i=1

Sk
(
(A1 ∩Ui), . . . ,(Am ∩Ui)

)
.

Hence we can write

DisCoord(A1, . . . ,Am) =
r

∑
i=1

m

∑
k=1

(
dim(Ak ∩Ui)−Sk

(
(A1 ∩Ui), . . . ,(Am ∩Ui)

))
,

which simplifies to the theorem hypothesis.

3.1.8 Additional Results about Coordination

Another noteworthy, yet unused, theorem in coordination (the results in coded

caching we present in Chapter 4 circumvent the need for it) is Theorem 3.3.1.

Theorem 3.3.1 states that if A1 ⊂ ·· · ⊂ As and B1 ⊂ ·· · ⊂ Bt are two increasing se-

quences of subspaces of an F-universe, then all these subspaces and their pairwise

intersections
(
i.e. Ai ∩B j for any i ∈ [s] and j ∈ [t]

)
are coordinated.

In particular, Theorem 3.3.1 implies the sometimes convenient fact that if

A,B,C are subspaces of an F-universe with B ⊂C, then A,B,C are coordinated.

3.2 Minimizers and Greedy Algorithms
In this section we prove theorems regarding the structure of minimizers and drive

the discoordination “formula” from Theorem 3.1.9. As previously stated, without a

good understanding of the Si we only get partial information about the discoordina-

tion. Still, this discoordination formula, and certain other considerations based on

“greedy algorithms” to build minimizers, will make proving Theorem 3.1.4 easier.
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3.2.1 Meet Numbers and Basic Greedy Considerations

There are numerous properties of discoordination minimizers, X , of subsets

U1, . . . ,Um worth stating. Since

DisCoordX(U1, . . . ,Um) =
m

∑
i=1

(
dim(Ui)−|X ∩Ui|

)
=

m

∑
i=1

dim(Ui)−
m

∑
i=1

|X ∩Ui|,

a minimizer X is an element of Ind(U) that maximizes ∑
m
i=1 |X ∩Ui|.

Definition 3.2.1. Let U1, . . . ,Um be subspaces of an F-universe, U . For a finite

subset X ⊂ U we define the meet of X in U1, . . . ,Um to be

Meet(X) = Meet(X ;U1, . . . ,Um) =
m

∑
i=1

|X ∩Ui|.

If x ∈ U , we define the (point-wise) meet of x in U1, . . . ,Um to be

meet(x) = meet(x;U1, . . . ,Um) = Meet({x};U1, . . . ,Um) =
∣∣{i ∈ [m] | x ∈Ui}

∣∣.
If X = {x1, . . . ,xm} is a finite subset of U , we say that x1, . . . ,xm is in decreasing

meet order if

meet(x1)≥ meet(x2)≥ ·· · ≥ meet(xn).

Usually U1, . . . ,Um will be fixed, so we may simply write Meet(X) and meet(x)

without confusion. Of course meet(x) is the same as Meet({x}); hence we distin-

guish between “meet” and “Meet” for ease of reading.

Given the above definition we have

Meet(X ;U1, . . . ,Um) = ∑
x∈X

meet(x;U1, . . . ,Um).

It follows that X ∈ Ind(U) that minimize

DisCoordX(U1, . . . ,Um) =
m

∑
i=1

dim(Ui)−Meet(X ;U1, . . . ,Um),
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are the same X ∈ Ind(U) that maximize

Meet(X ;U1, . . . ,Um) =
m

∑
i=1

|X ∩Ui|= ∑
x∈X

meet(x;U1, . . . ,Um).

The following is an important remark about minimizers that is related to the

“greedy algorithm” we will discuss in Subsection 3.2.2.

Proposition 3.2.2. Let U1, . . . ,Um be subspaces of an F-universe, U , and let X ∈
Ind(U) be a minimizer of U1, . . . ,Um, which is a basis of U and is arranged in a

meet decreasing order, i.e., X = {x1, . . . ,xn}, and

meet(x1)≥ meet(x2)≥ ·· · ≥ meet(xn).

Let X ′ = {x′1, . . . ,x
′
k} be any other independent set in U arranged in meet decreas-

ing order, i.e.,

meet(x′1)≥ meet(x′2)≥ ·· · ≥ meet(x′k).

Then meet(xk)≥ meet(x′k).

Proof. We claim that for some j′ ∈ [k] and some j ∈ {k,k + 1, . . . ,n}, we may

exchange x′j′ for x j in X and get a new independent set of vectors X ′′ = (X \{x j})∪
{x′j′}. To show this, consider that each x′j′ may be written uniquely as a linear

combination

γ j′1x1 + γ j′2x2 + · · ·+ γ j′nxn

(where the γ j′i ∈ F are scalars). If γ j′i ̸= 0, in X we may exchange xi with x′j′ and

get a new basis. Hence we do this for some i ≥ k unless γ j′i = 0 for all j′ ∈ [k] and

i ≥ k, which implies that for all j′ ∈ [k],

x′j′ ∈W = Span(x1, . . . ,xk−1).

However, x′1, . . . ,x
′
k is a set of k linearly independent vectors, and cannot all lie in

the (k−1)-dimensional subspace W . Therefore, there is some x′j′ with j′ ≤ k that

can be substituted for an xi ∈ X with i ≥ k to obtain a new basis X ′′.
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Suppose for the sake of contradiction that meet(xk)< meet(x′k) then

meet(xi)≤ meet(xk)< meet(x′k)≤ meet(x′j′),

and hence replacing xi in the basis X with x′j′ gives a basis X ′′ with Meet(X ′′) >

Meet(X). This contradicts the discoordination minimality of X .

The above proposition implies that if X ,X ′ are two minimizers of U1, . . . ,Um,

both arranged in a decreasing meet order x1, . . . ,xn and x′1, . . . ,x
′
n′ , then meet(xi) =

meet(x′i) for i ∈ [min(n,n′)].

There are a few important corollaries of the above proposition on substitution

of vectors in a minimizing set of linearly independent vectors that we must empha-

sise.

Theorem 3.2.3. Let X ∈ Ind(U) be a minimizer of subsets U1, . . . ,Um of some F-

universe, U , and let X ′ = X ∩ (U1 + · · ·+Um). Then the following are true

1. |X ′|= dim(U1 + · · ·+Um)

2. if x′ ∈ X ′, then meet(x′)≥ 1

3. if x ∈ X \X ′, then meet(x) = 0

Proof. Since W = U1 + · · ·+Um is spanned by U1 ∪ ·· · ∪Um, one can write W as

the span of dim(W ) vectors, each of which lies in at least one Ui. If n = dim(W ),

this gives n linearly independent vectors x1, . . . ,xn for which meet(xi) ≥ 1 for all

i ∈ [n]. It follows that X has at least n vectors, x, that have meet(x)≥ 1. Since these

n vectors all lie in X ′, and are linearly independent, they form a basis for W , and

all other vectors in X must lie outside U1 + · · ·+Um.

Definition 3.2.4. Let X ∈ Ind(U) be a minimizer of subsets U1, . . . ,Um of some

F-universe, U . We say that X is a small minimizer (with respect to U1, . . . ,Un) if

X ⊂ (U1 + . . .+Um), and is a large minimizer if X is a basis for U .

Proposition 3.2.5. Let X ∈ Ind(U) be a minimizer of subsets U1, . . . ,Um of some

F-universe, U . Then X ′ ⊂ X ⊂ X ′′ where X ′ is a small minimizer and X ′′ is a large

minimizer. Furthermore all small minimizers are of size dim(U1 + · · ·+Um).
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Proof. We have X ′ = X ∩ (U1 + . . .+Um) is a small minimizer and X ′ ⊂ X . By

Theorem 3.2.3, X ′ is of size dim(U1 + · · ·+Um) and spans all of U1 + · · ·+Um.

If X is not a basis for U we can extend it to a basis X ′′ of U . It follows that all

elements of X ′′ \X ′ lie outside of U1+ · · ·+Um, and hence each has meet zero with

U1, . . . ,Um.

3.2.2 The Greedy Algorithm for Minimizers

We give a simple “greedy algorithm” to build a minimizer, X , of subspaces

U1, . . . ,Um of a universe. This algorithm will help us prove Theorems 3.1.4, 3.1.8,

and 3.1.9.

Definition 3.2.6. Let U1, . . . ,Um be subspaces of an F-universe, U . For any k ∈ [m],

a k-fold intersection of the U1, . . . ,Um refers to any subspace of the form

Ui1 ∩ . . .∩Uik where 1 ≤ i1 < .. . < ik ≤ m.

For each k ∈ [m], we use Sk,Vk respectively to denote the respective sum and union

of all the k-fold intersections of the U1, . . . ,Um, i.e.,

Sk = Sk(U1, . . . ,Um) = ∑
1≤i1<...<ik≤m

Ui1 ∩ . . .∩Uik ,

Vk = Vk(U1, . . . ,Um) =
⋃

1≤i1<...<ik≤m

Ui1 ∩ . . .∩Uik ,

where the Sk and the Vk are functions defining the Sk and the Wk in terms of

U1, . . . ,Um. For instance we have,

S1 =U1 + · · ·+Um, S2 = ∑
i1<i2

Ui1 ∩Ui2 ,

S3 = ∑
i1<i2<i3

Ui1 ∩Ui2 ∩Ui3 , Sm =U1 ∩ . . .∩Um;

and

V1 =U1 ∪·· ·∪Um, V2 =
⋃

i1<i2

Ui1 ∩Ui2 ,
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V3 =
⋃

i1<i2<i3

Ui1 ∩Ui2 ∩Ui3 , Vm =U1 ∩ . . .∩Um.

For convenience2 we set Sm+1 = 0, Vm+1 = /0, and S0 =V0 = U .

Recall from Subsection 3.2.1 that X ∈ Ind(U) is a minimizer of U1, . . . ,Um iff

it maximizes the expression

f (X) = ∑
x∈X

meet(x) = ∑
x∈X

meet(x;U1, . . . ,Um). (3.2.1)

It is important to note that the Vi defined above are subsets of U and not gener-

ally subspaces of U , however the Si are subspaces of U . The Vi and Si satisfy the

following conditions:

1. for all i = 0, . . . ,m we have Vi ⊂ Si = Span(Vi);

2. 0 = Sm+1 ⊂ Sm ⊂ . . .⊂ S1 ⊂ S0 = U ;

3. /0 =Vm+1 ⊂Vm ⊂ . . .⊂V1 ⊂V0 = U ;

4. for all y ∈ U and i = 0, . . . ,m we have meet(y) = i iff y ∈Vi \Vi+1;

5. for all i = 0, . . . ,m we have that Si/Si+1 is spanned by the images of the

elements of Vi in the quotient space U/Si+1; hence

6. for all i = 0, . . . ,m, there is a subset Yi ⊂ Vi whose image in U/Si+1 is a

basis for Si/Si+1; since no such element of Yi can lie in Si+1 (i.e., equal 0 in

U/Si+1), we have that any such Yi consists entirely of elements y ∈ U such

that Meet(y) = i.

The Yi described above turn out to be essential to our greedy algorithm.

Definition 3.2.7. Let U1, . . . ,Um be subspaces of an F-universe, U , and let notation

be as in Definition 3.2.6. For i = 0, . . . ,m, we say that a set Yi is a purely i-th

intersection basis (for U1, . . . ,Um) if

1. Yi is a basis of Si relative to Si+1, and

2Our conveniences actually follow by definition, given reasonable interpretations of an empty
intersection, empty sum, and an empty union.
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2. for any y ∈ Yi, meet(y) = meet(y;U1, . . . ,Um) = i.

Proposition 3.2.8. Let U1, . . . ,Um be subspaces of an F-universe, U , and let nota-

tion be as in Definition 3.2.6. Then for each i = 0, . . . ,m, there exists a purely i-th

intersection basis.

Proof. The proof consists of unwinding the definitions. Setting V ′
i = Vi \Vi+1 we

have

V ′
i = {y ∈ U | meet(y;U1, . . . ,Um) = i}.

Since Vi = V ′
i ∪Vi+1, Si = Span(Vi), and Si+1 = Span(Vi+1), it follows that Si is

spanned by Si+1 and V ′
i . Hence, there exists a Yi consisting entirely of elements of

V ′
i such that Yi is a basis of Si relative to Si+1.

Roughly, our “greedy algorithm” to construct a minimizer, X , of subspaces

U1, . . . ,Um of a universe functions as such:

• since a minimizer X ∈ Ind(U) maximizes the expression in (3.2.1), our

“greedy algorithm” first chooses the largest possible subset Ym ∈ Ind(U)
consisting of elements in y with Meet(y) = m; hence Ym can be as large

as dim(Sm), and such a Ym is a basis for Sm;

• the second step is choose the largest subset, Ym−1, possible consisting of y

with meet(y) = m−1 such that Ym ∪Ym−1 remains linearly independent; the

largest possible Ym−1 is of size dim(Sm−1/Sm) and must be a purely (m−1)-

th intersection basis (evident from Theorem 3.2.9);

• the i-th step, for i = 3, . . . ,m is that given Ym,Ym−1, . . . ,Ym−i+2, we choose

Ym−i+1 to consist of y ∈ U with meet(y) = m− i+1 and as large as possible

with Ym ∪Ym−1 ∪·· ·∪Ym−i+1 linearly independent.

We will prove that the algorithm roughly described above always produces a min-

imizer, and each minimizer is constructed as such. A novel point is that each Yi is

independent of the particularly chosen Ym, . . . ,Yi+1, since one can take Yi to be an

arbitrary purely i-th intersection basis. Let us state this result formally.
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Theorem 3.2.9. Let U1, . . . ,Um be subspaces of an F-universe, U , and let notation

be as in Definition 3.2.6. Let X ∈ Ind(U), and for i = 0, . . . ,m set

Yi =
{

x ∈ X | meet(x;U1, . . . ,Um) = i
}
.

Then

Meet(X ;U1, . . . ,Um)≤
m

∑
i=1

|Si|, (3.2.2)

with equality iff for each i ∈ [m], Yi is a purely i-intersection basis, i.e., Yi is a basis

of Si relative to Si+1 and all elements of Yi lie in exactly i of U1, . . . ,Um. Such Yi

exist by Proposition 3.2.8.

Moreover, all minimizers, X ∈ Ind(U), of U1, . . . ,Um are of the form

X = Ym ∪·· ·∪Y1 ∪Y0,

where for i ∈ [m], Yi is a purely i-intersection basis, and Y0 is some set of vectors

that is a subset of a purely 0-intersection basis, i.e., a set of vectors whose image

in S0/S1 = U/S1 is an independent set in U/S1. In particular, for any such X we

have

|Yi|+ · · ·+ |Ym|= dim(Si), (3.2.3)

and

Yi, . . . ,Ym are mutually disjoint and are a basis of Si for all i ≥ 1. (3.2.4)

We also have
m

∑
i=1

dim(Si) =
m

∑
i=1

i |Yi|=
m

∑
i=1

i dim(Si/Si+1), (3.2.5)

and hence we may also write

DisCoord(U1, . . . ,Um) =
m

∑
i=1

dim(Ui)−
m

∑
i=1

i dim(Si/Si+1) (3.2.6)

Finally

DisCoord(U1, . . . ,Um) =
m

∑
i=1

dim(Ui)−
m

∑
i=1

dim(Si). (3.2.7)
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Proof. By definition, the Y0, . . . ,Ym are disjoint, since if y ∈Yi then meet(y) = i for

all i = 0,1, . . . ,m. For any i ∈ [m] since Yi ∪ ·· ·∪Ym lies in Si and is a subset of X ,

these vectors are linearly independent, and hence

|Yi|+ · · ·+ |Ym| ≤ dim(Si). (3.2.8)

Using the inequality summation principle, we can sum (3.2.8) for all i ∈ [m] to first

obtain the inequality
m

∑
i=1

i |Yi| ≤
m

∑
i=1

dim(Si), (3.2.9)

and infer that equality holds in (3.2.9) iff for all i ∈ [m] we have (3.2.8) holding

with equality. Since

Meet(X ;U1, . . . ,Um) = ∑
i=1

Meet(Yi;U1, . . . ,Um) =
m

∑
i=1

i |Yi|,

we can rewrite (3.2.9) as (3.2.2).

Next consider when (3.2.2) holds with equality. Accordingly, (3.2.8) must hold

with equality for each i∈ [m]. For i=m we must have |Ym|= dim(Sm), this happens

iff Ym is a basis for Sm; since Sm+1 = 0, this also implies that Ym is a basis for Sm

relative to Sm+1.

For i = m−1, (3.2.9) holds iff Ym∪Ym−1 is a basis for Sm−1; as Ym is a basis for

Sm, this holds with equality iff Ym−1 is a basis for Sm−1 relative to Sm. Since Ym−1

are the elements of X that meet exactly m− 1 of U1, . . . ,Um, such Ym−1 exist and

are a purely (m−1)-intersection bases.

We proceed by investigating (3.2.9) for j = m − 2, then j = m − 3, and so

on until j = 1. For each such j, we have established that (3.2.9) holds for all

i ≥ j + 1 exactly when for each i ≥ j + 1, Yi is a purely i-th intersection basis.

Hence Ym ∪·· ·∪Yj+1 is a basis for S j+1, and the same argument as in the previous

paragraph shows that (3.2.9) holds with equality for i = j iff Yj is a purely j-th

intersection basis.

It follows that there exist X satisfying (3.2.2), and all such X have each Yi being

a purely i-th intersection basis for i ≥ 1. Y0 has no effect on Meet(X ;U1, . . . ,Um),

but Y0 ∪Y1 ∪ ·· · ∪Ym must be a linearly independent set. Since Y1 ∪ ·· · ∪Ym span
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S1 =U1 + · · ·+Um, it is equivalent to say that Y0 is an arbitrary independent set in

S0/S1 = U/S1 = U/(U1 + · · ·+Um).

For any such X we have that (3.2.8) holds for any i ∈ [m] with equality, which

proves (3.2.3). Since the Y0,Y1, . . . ,Ym are mutually disjoint (each correspond to

elements x ∈ X with a different meet(x) value), for any i we have Yi, . . . ,Ym are

mutually disjoint and Yi ∪·· ·∪Ym lie in Si; therefore (3.2.8) implies that

|Yi ∪·· ·∪Ym|= dim(Si),

and Yi ∪·· ·∪Ym is a basis for Si; this proves (3.2.4). Since

|Yi|= dim(Si)−dim(Si+1) = dim(Si/Si+1),

we infer (3.2.5), and combining this with (3.2.7) yields (3.2.6).

Finally, to prove (3.2.7), we have shown X = Y0 ∪Y1 ∪·· ·∪Ym satisfies (3.2.2)

with equality. Thus, X maximizes Meet(X ;U1, . . . ,Um). Since X is a minimizer

for U1, . . . ,Um iff X maximizes Meet(X ;U1, . . . ,Um) over all X ∈ Ind(U), we have

(3.2.7).

3.2.3 Decomposing Discoordination into “k-Fold Intersection” Parts

In Section 3.3 we will show that for any subspaces U1,U2,U3 ⊂U of an F-universe,

U , the set of all 2-fold intersections

U1 ∩U2, U1 ∩U3, U2 ∩U3

are coordinated. The theorems that we will prove will imply a few interesting facts:

1. the images of U1 ∩U2, U1 ∩U3, U2 ∩U3 in U/S3 (with S3 = U1 ∩U2 ∩U3)

are linearly independent,

2. U1,U2,U3 are coordinated iff [U1]S2 , [U2]S2 , [U3]S2 are linearly independent

(in U/S2),

3.

DisCoordU (U1,U2,U3) = DisCoordU/S2([U1]S2 , [U2]S2 , [U3]S2).
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In this subsection we want to explain that such properties of discoordination

hold whenever U1, . . . ,Um are subspaces of a universe such that all their k-fold

intersections are coordinated. Considering the notation for S j in Definition 3.2.6,

we will show the following two main results: first, for any j ≥ k, the images in

U/S j+1 of the set of all j-fold intersections, meaning sets of the form

U{i1,...,i j} =Ui1 ∩·· ·∩Ui j

(with i1, . . . , i j distinct) are linearly independent; this is claim (7) of Theorem 3.2.10

below; second

DisCoordU/Sk([U1]Sk , . . . , [Um]Sk)≤ DisCoordU (U1, . . . ,Um)

(we don’t know if equality generally holds); this is Theorem 3.2.11. As previously

mentioned in Subsection 3.1.5, we know that the discoordination of U1, . . . ,Um in U
is generally different from that of the their images in U/W without some conditions

on W .

Theorem 3.2.10. Let U1, . . . ,Um be subspaces of an F-universe, U , and let notation

be as in Definition 3.2.6. For I ⊂ [m] let

UI =
⋂
i∈ I

Ui .

Assume that for some k ≥ 1, the set of all k-fold intersections,

{
UI
∣∣ I ⊂ [m], |I|= k

}
,

is coordinated by some Z ∈ Ind(U). For j = 0, . . . ,m let

Z j = {z ∈ Z | meet(z;U1, . . . ,Um) = j}

and

Z≥ j =
⋃
i≥ j

Zi = {z ∈ Z | meet(z;U1, . . . ,Um)≥ j}.

Then the following statements hold.
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1. For any I ⊂ [m] with |I|= j ≥ k, UI is coordinated by Z.

2. For any I ⊂ [m] with |I|= j ≥ k, UI is coordinated by Z≥ j,

UI ∩Z≥ j is a basis of UI.

3. For any j ≥ k, S j is coordinated by Z≥ j, and Z≥ j is a basis for S j.

4. For any j ≥ k, Z j is a basis for S j relative to S j+1.

5. For each I ⊂ [m] with |I| = j ≥ k, in U/S j+1, the set [UI ∩Z j]S j+1 is a basis

for [UI]S j+1 of size |UI ∩Z j|.

6. For any j ≥ k, each element of Z j is in a unique element of UI such that

I ⊂ [m] satisfies |I|= j, and so Z j is partitioned into subsets {UI ∩Z j} with

I ranging over all I ⊂ [m] with |I|= j.

7. For any j ≥ k, the images of UI in U/S j+1 for I ⊂ [m] such that |I|= j, i.e.,

[UI]S j+1 for I ⊂ [m], |I|= j

are linearly independent subspaces of S j/S j+1.

8. If X is any minimizer of U1, . . . ,Um, and we set

X j = {x ∈ X | meet(x;U1, . . . ,Um) = j}

and

X≥ j = {x ∈ X | meet(x;U1, . . . ,Um)≥ j},

then all the above statements hold with Z replaced everywhere by X.

Proof. Most of the implications easily result from the previous ones, often making

use of Proposition 3.1.2.

(1): For any j ≥ 2, consider any I ⊂ [m] with |I| = j: if i1, i2 are distinct

elements of I and I1 = I \{i1}, I2 = I \{i2}, then

UI1 ∩UI2 =
⋂

i∈ I1∪ I2

Ui = UI.
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Hence each UI is the intersection of two UI′ with |I′| = |I|− 1. By assumption Z

coordinates all the UI′ with |I′|= k, so in view of Proposition 3.1.2, Z coordinates

all UI with |I|= k+1. Repeated application shows that the same holds with |I|=
k+2, . . . ,m.

(2): If |I| = j ≥ k, any element z ∈ Z ∩UI meets all Ui with i ∈ I, and hence

meet(z)≥ j. Thus Z∩UI = Z≥ j∩UI . By (1), Z coordinates UI , so Z∩UI = Z≥ j∩UI

is a basis for UI .

(3): S j is the span of all UI with |I| = j. Since Z≥ j coordinates each such UI ,

Proposition 3.1.2 implies that Z≥ j coordinates S j and that S j ∩Z≥ j is a basis for

S j. However, each element of Z≥ j meets j of the U1, . . . ,Um, consequently each

element of Z≥ j lies in some UI with |I| = j, and hence also lies in S j. Therefore,

Z≥ j ∩S j = Z≥ j is a basis for S j.

(4): By (3), we have Z≥ j+1,Z≥ j are, respectively, bases for S j+1,S j. It follows

that the set Z≥ j \Z≥ j+1 is a basis for S j relative to S j+1. But Z≥ j \Z≥ j+1 equals Z j.

(5): According to (4), in U/S j+1, the vectors in the set [UI ∩Z j]S j+1 are linearly

independent and are of size |UI ∩Z j|. Since

UI = Span(Z≥ j ∩UI),

[UI]S j+1 = [UI +S j+1]S j+1 = [Span(Z′)]S j+1

where

Z′ = (Z≥ j ∩UI)∪Z≥ j+1 = (Z j ∩UI)∪Z≥ j+1.

Since Z≥ j+1 is a basis for S j+1 we have that [Z′]S j+1 = [Z j ∩UI]S j+1 . This implies

that [Span(Z′)]S j+1 = [Span(Z j ∩UI)]S j+1 = [UI]S j+1 . Then, [Z j ∩UI]S j+1 are a set of

linearly independent vectors in U/S j+1 and span [UI]S j+1 , and hence form a basis

for [UI]S j+1 .

(6): This is immediate from the definition of Z j as z ∈ Z such that meet(z) = j.

(7): We have

|Z j|= ∑
|I|= j

|Z j ∩UI|,
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and so in U/S j+1 we have

dim(S j/S j+1) = ∑
|I|= j

dimU/S j+1([UI]S j+1).

Since the UI with |I|= j span all of S j, the [UI]S j+1 span all of S j/S j+1 in U/S j+1.

By (2.5.2) these subspaces are linearly independent.

(8): According to Theorem 3.2.9, for all j ∈ [m], each X j is a purely j-th in-

tersection basis, i.e. a basis for S j relative to S j+1 consisting entirely of x with

meet(x) = j. It follows that

∑
|I|= j

|X j ∩UI|= |X j|= dim(S j/S j+1).

But (3.2.4) implies that X j+1, . . . ,Xm is a basis for S j+1. As a result, [X j]S j+1 is a

linearly independent set in U/S j+1 and

|X j ∩UI| ≤ dimU/S j+1([UI]S j+1) = |Z j ∩UI|.

The Inequality Summation Principle (Proposition 2.2.1) implies that

∑
|I|= j

|X j ∩UI| ≤ ∑
|I|= j

|Z j ∩UI|.

This is satisfied with equality iff |X j ∩UI| = |Z j ∩UI| for all I with |I| = j. Visi-

bly this inequality is satisfied with equality, since both sides equal dim(S j/S j+1).

Therefore for each I, the image of X j ∩UI in U/S j+1 is a basis for [UI]S j+1 .

It follows that for all j ≥ k, each X j is partitioned into X j ∩UI over all |I|, such

that the image of X j ∩UI in U/S j+1 is a basis for [UI]S j+1 . This implies (7), from

which all of (1)–(6) follow or already have been established.

Theorem 3.2.11. Let U1, . . . ,Um be subspaces of an F-universe, U , and let notation

be as in Definition 3.2.6. Then for any k ∈ [m] we have

DisCoordU/Sk
(
[U1]Sk , . . . , [Um]Sk

)
≤ DisCoordU

(
U1, . . . ,Um

)
. (3.2.10)
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Furthermore, for any minimizer, X, and 0 ≤ j ≤ m let

X j = {x ∈ X | meet(x;U1, . . . ,Um) = j}

X≥k =
⋃
j≥k

X j, X<k =
⋃
j<k

X j.

Then (3.2.10) holds with equality if for some minimizer, X, the following conditions

hold:

1. X≥k coordinates Ui ∩Sk for all i,

2. X ′ = [X<k]Sk is a minimizer for [U1]Sk , . . . , [Um]Sk ; if so, this implies that the

same is true for all minimizers, X, of U1, . . . ,Um, and

3. for all i ∈ [m], |Ui∩X<k| equals the size of the number of Sk-cosets in [Ai]Sk ∩
[X<k]Sk (the first quantity is always bounded above by the second).

If (3.2.10) holds with equality, then the above conditions hold for all minimizers.

Proof. Let X be a minimizer of U1, . . . ,Um. Then (3.2.4) implies that X≥k is a basis

for Sk, and hence the map X<k to its image, X ′, in U/Sk is a bijection, and the X ′

are linearly independent in U/Sk. Hence for any subspace W ⊂ U we have

∣∣W ∩X≥k
∣∣≤ dim(W ∩Sk),

and X ′ ∈ Ind(U/Sk) is a linearly independent set with

|W ∩X<k| ≤
∣∣[W ]Sk ∩X ′∣∣,

where the right most term involving X ′ counts the size of [A]Sk ∩X ′ measured in

the number of Sk-cosets. Adding the above two displayed inequalities we get

|W ∩X |= |W ∩X≥k|+ |W ∩X<k| ≤ dim(W ∩Sk)+
∣∣[W ]Sk ∩X ′∣∣.

Hence

DisCoordU (U1, . . . ,Um) =
m

∑
i=1

(
dim(Ui)−|Ui ∩X |

)
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≥
m

∑
i=1

(
dim(Ui)−dim(Ui ∩Sk)−

∣∣[Ui]Sk ∩X ′∣∣) (3.2.11)

=
m

∑
i=1

(
dimU/Sk

(
[Ui]Sk

)
−
∣∣[Ui]Sk ∩X ′∣∣)= DisCoordU/Sk

X ′
(
[U1]Sk , . . . , [Um]Sk

)
≥ DisCoordU/Sk

(
[U1]Sk , . . . , [Um]Sk

)
, (3.2.12)

which implies (3.2.10). Furthermore, this inequality is strict unless both (3.2.11)

and (3.2.12) hold with equality, which means that conditions (1)–(3) of the theorem

statement must hold for (3.2.10) to be satisfied with equality.

If both (3.2.11) and (3.2.12) hold for some minimizer, X , of U1, . . . ,Um, then

we have

DisCoordU (U1, . . . ,Um) = DisCoordU/Sk
(
[U1]Sk , . . . , [Um]Sk

)
,

it follows that for any minimizer, the two inequalities (3.2.11) and (3.2.12) must

also hold with equality, and hence conditions (1)–(3) must hold for all minimizers.

3.2.4 An Equivalent Discoordination Formula

There is another way to write (3.2.7).

Proposition 3.2.12. Let U1, . . . ,Um be subspaces of an F-universe, U , and let no-

tation be as in Definition 3.2.6. Then the discoordination of U1, . . . ,Um equals

dm +dm−1 + · · ·+d1 where d j is given by

d j =

(
m

∑
i=1

dimU/S j+1([Ui ∩S j]S j+1)

)
− j dim(S j/S j+1)

Proof. For arbitrary

0 = Sm+1 ⊂ Sm ⊂ ·· · ⊂ S1 ⊂ S0 = U ,
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and any subspace Ui ⊂ U , we have

dimU/S j+1([Ui ∩S j]S j+1) = dim(Ui ∩S j)−dim(Ui ∩S j+1).

This allows us to write

dim(Ui) =
m

∑
j=1

dimU/S j+1([Ui ∩S j]S j+1).

By (3.2.6) and the above equality the proposition follows.

Since S j is the span of all j-fold intersections one can intuitively view d j from

the proposition above as a measurement of the “failure” of the images of U1 ∩
S j, . . . ,Um ∩S j in U/S j+1 to be linearly independent in U/S j+1.

3.3 Coordination of Quasi-Increasing Sequences
In this section we prove two main theorems, which we now state. These results

will aid in proving Theorem 3.1.4.

Theorem 3.3.1. Let U be an F-universe, and let

U1 ⊂ ·· · ⊂Us, W1 ⊂ ·· · ⊂Wt

be two sequences of increasing subspaces of U . Then the set of subspaces Ui ∩Wj

ranging over all i ∈ [s] and j ∈ [t] are coordinated.

A proof of this theorem is given in Subsection 3.3.3. This theorem has the

following corollary.

Corollary 3.3.2. Let U be an F-universe, and let

U1 ⊂ ·· · ⊂Us, W1 ⊂ ·· · ⊂Wt

be two sequences of increasing subspaces of U . Then the subspaces

U1, . . . ,Us, W1, . . . ,Wt are coordinated.

The corollary is obtained from the theorem by extending the sequences of vec-

tor spaces by setting Us+1 =Wt+1 = U ; then for all i ∈ [s], Ui ∩Wt+1 =Ui ∩U =Ui
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and similarly Us+1 ∩Wj =Wj for all j ∈ [t]. The corollary is more succinct, since

the intersection of any two subspaces coordinated by some basis X is again coor-

dinated by X .

For our analysis of coded caching, we have found the result with s = 2 and

t = 1 helpful. However in simplifying our results we have been able to forgo any

use of Theorem 3.3.1.

Note that if s = t = 2 and we let U2 = W2 = U , Theorem 3.3.1 implies that

U1 ∩W1,U1,W1 are coordinated, which is all one needs to prove the dimension for-

mula. Naturally, Theorem 3.3.1 can be viewed as a generalization of the dimension

formula.

Theorem 3.3.3. Let U1,U2,U3 be subspaces of an F-universe, U . Then the six

spaces

U1 ∩U2 ∩U3, U1 ∩U2, U1 ∩U3, U2 ∩U3, U1, U2

are coordinated.

This theorem will be crucial in showing Theorem 3.1.4 and a proof is given in

Subsection 3.3.4. It turns out that both theorems can be proven by a strategy that

generalizes the proof of the dimension formula.

3.3.1 Quasi-Increasing Sequences

If U1 ⊂ ·· · ⊂ Um are a set of increasing subspaces of some universe, then this

sequence is coordinated: consider a basis for U1, and successively extend that basis

to a basis for U2 and so on. In this subsection we give a more general situation

where a similar strategy works.

Definition 3.3.4. Let U1, . . . ,Um be a sequence of vector spaces in some universe.

For r = 2,3, . . . ,m , we say that this sequence is quasi-increasing in position r if

whenever

vr = v1 + · · ·+ vr−1 for v1 ∈U1, . . . ,vr ∈Ur, (3.3.1)

one also has

vr = v′1 + · · ·+ v′r−1 for some v′1 ∈U1, . . . ,v′r−1 ∈Ur−1,
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such that

v′i ̸= 0 ⇒ Ui ⊂Ur

(i.e., if i < r and Ui ̸⊂ Ur then v′i = 0). If this condition holds for all r = 2, . . . ,m,

we say that U1, . . . ,Um is quasi-increasing.

To be quasi-increasing in position r is equivalent to

(
Ur ∩ (U1 + · · ·+Ur−1)

)
⊂ ∑

i<r and Ui⊂Ur

Ui ; (3.3.2)

the reverse inclusion is clear, so we can replace ⊂ with = if we need to. Fur-

thermore, any increasing sequence U1 ⊂ ·· · ⊂ Um is also quasi-increasing, since

whenever i < r we have Ui ⊂Ur.

Example 3.3.5. Let A,B be any vector spaces in some universe, and let U1 = A∩B,

U2 = A, and U3 = B. Then U1 ⊂U2 and U1 ⊂U3, but U2 ̸⊂U3. However, if v1 ∈U1,

v2 ∈U2, and v3 ∈U3 with

v3 = v1 + v2,

then in fact v3 lies in U1 (one sees this by first noting that v2 = v3 − v1, and since

v1,v3 ∈ B then also v2 ∈ B; since v2 ∈ A then v2 ∈ A∩B = U1). Hence the above

sequence is quasi-increasing, but not generally increasing.

Example 3.3.5 is the essential step in proving the dimension formula: namely

we let X1 be a basis for U1 = A∩B, X2 a minimal set such that X1 ∪X2 spans A,

and X3 a minimal set such that X1 ∪X3 spans B. We then see that X1 ∪X2 is a basis

for U2 = A; to show that X1 ∪X2 ∪X3 is a basis, we need to show that there is no

nontrivial relation between the vectors of X3 and those of X1 and X2; if there is such

a relation we would have

v1 + v2 = v3 ̸= 0

where each vi is a linear combination of vectors in Xi, but then (as shown in Exam-

ple 3.3.5) we will have v3 ∈U1, which contradicts the fact that X1 ∪X3 are linearly

independent.

The theorem below strengthens the method used to prove the dimension for-

mula.
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Theorem 3.3.6. Any quasi-increasing sequence is coordinated. In more detail, let

U1, . . . ,Um be a sequence of quasi-increasing subspaces in some universe. Let X1

be any basis for U1, and inductively on i = 2, . . . ,m, let Xi be a minimal size set of

vectors that when added to

X ′ =
⋃

j s.t. U j⊂Ui

X j ,

Xi ∪ X ′ spans Ui. Then X1, . . . ,Xm are mutually disjoint and X = X1 ∪ ·· · ∪ Xm

coordinate U1, . . . ,Um, and, more specifically, for each i we have

X ∩Ui =
⋃

j s.t. U j⊆Ui

X j

is a basis for Ui.

Proof. We prove this by induction on m. The base case m = 1 is clear since X1 is

simply a basis for U1.

Now say that the theorem holds for some value of m ≥ 1, let U1, . . . ,Um,Um+1

be a quasi-increasing sequence, and X1, . . . ,Xm be sets of vectors as in the theorem.

Let I = {i ∈ [m] | Ui ⊂Um+1}. By Proposition 3.1.2, X ′ =
⋃

i∈I Xi coordinates

U ′ = ∑
i∈I

Ui; (3.3.3)

since Ui ⊂ Um+1 for all i ∈ I, we have U ′ ⊂ Um+1. Let Xm+1 be as specified in

the theorem. Then the vectors X ′ ∪Xm+1 are linearly independent (and Xm+1 is

disjoint from X ′). By assumption, X1 ∪·· ·∪Xm are (mutually disjoint and) linearly

independent. Then if X1∪·· ·∪Xm+1 is not a linearly independent set of vectors (or

if Xm+1 is not distinct from X1, . . . ,Xm), we have

vm+1 = v1 + · · ·+ vm,

where each vi is in the span of Xi and vm+1 is nonzero. But then we have

vm+1 = v′1 + · · ·+ v′m,
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where v′i ̸= 0 only if i ∈ I; hence v′1 + · · ·+ v′m ∈U ′, which contradicts the fact that

X ′∪Xm+1 are linearly independent.

The main subtlety in the proof of Theorem 3.3.6 is considering U ′ in (3.3.3)

which is the sum of all subspaces that lie in Um+1. The dimension formula works

with U1,U2,U3 as in Example 3.3.5, where U1 is the sole subspace that lies in U3.

We remark that not all sets of coordinated subspaces in some universe form

a quasi-increasing sequence. Consider, in F3 where e1,e2,e3 denote the standard

basis vectors, the subspaces

U1 = Span(e1), U2 = Span(e1,e2), U3 = Span(e2,e3);

these subspaces are coordinated by X = {e1,e2,e3}, but there is no ordering of

them that results in a quasi-increasing sequence. For instance with the sequence

U1,U2,U3, take v3 = e2 ∈ U3, then v3 = v2 ∈ U2 where v2 ̸= 0 but U2 ̸⊂ U3. The

other orderings follow a similar argument.

3.3.2 Maximal Index Sets

Say that we are trying to prove that a given sequence U1, . . . ,Um of subspaces in

a universe is quasi-increasing. Meaning, given any r between 2 and m and any

equation

vr = vr−1 + · · ·+ v1,

we wish to find v′1, . . . ,v
′
r−1 as in Definition 3.3.4, i.e., whose sum is also vr, with

v′i ∈Ui for i ∈ [r−1], but such that v′i = 0 if Ui ̸⊂Ur. In practice one can simplify

this task by noting that if i < j < r and Ui ⊂ U j, then we can always assume that

vi = 0, by replacing v j with v j +vi. This idea leads to the following simplification.

Definition 3.3.7. Let U1, . . . ,Um be a sequence of vector spaces in a universe, U .

For r = [m] we define the r-maximal index set, denoted Mr, to be

Mr = [r]\{i ∈ [r] |Ui ⊂U j for some j ̸= i} (3.3.4)

(equivalently, i ∈ Mr if Ui is a maximal subspace under inclusion among

U1, . . . ,Ur).
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Proposition 3.3.8. Let U1, . . . ,Ur be a sequence of vector spaces in a universe, U .

Then

U1 + · · ·+Ur = ∑
i∈Mr

Ui, (3.3.5)

i.e., any sum of elements in U1, . . . ,Ur can be written as a sum of those Ui that are

maximal under inclusion.

Proof. In case r = 1, we have Mr = M1 = {1}. Now we argue by induction on r:

say the proposition holds for r replaced by r−1 for some r ≥ 2; hence

U1 + · · ·+Ur−1 = ∑
i∈Mr−1

Ui.

If r ∈ Mr, then Mr = {r}∪(Mr−1 \ I′) where I′ is the set of i < r with Ui ⊂Ur. Then

∑
i∈ I′

Ui ⊂Ur,

so we have

U1 + · · ·+Ur−1 ⊂ Ur + ∑
i∈(Mr−1\I′)

Ui = ∑
i∈Mr

Ui.

Adding Ur to both sides we obtain

U1 + · · ·+Ur−1 +Ur ⊂ ∑
i∈Mr

Ui.

But since Mr ⊂ [r], the reverse inclusion is clear, and hence we obtain (3.3.5).

Otherwise r /∈ Mr, as a result Mr−1 = Mr and Ur ⊂Uk for some k ∈ [r−1]. Then

U1 + · · ·+Ur−1 +Ur = U1 + · · ·+Ur−1 +Uk = U1 + · · ·+Ur−1 = ∑
i∈Mr−1

Ui,

and since Mr−1 = Mr we again conclude (3.3.5).

3.3.3 Coordination of Two Sequences of Increasing Subspaces

In this subsection we prove Theorem 3.3.1. According to Theorem 3.3.6, it suffices

to prove the following stronger theorem.
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Theorem 3.3.9. Let U be an F-universe, and let

A1 ⊂ ·· · ⊂ As, B1 ⊂ ·· · ⊂ Bt

be two sequences of increasing subspaces of U . Let us order the s · t subspaces of

the form Ai ∩B j as follows:

U1 = A1∩B1, . . . ,Us = As∩B1,Us+1 = A1∩B2, . . . ,U2s = As∩B2, . . . ,Ust = As∩Bt

(i.e., for all i ∈ [s] and j ∈ [t], we set Ui+s( j−1) = Ai ∩B j). Then U1, . . . ,Ust is a

quasi-increasing sequence of subspaces.

Proof. Let us prove the theorem by induction on t. For t = 1, the sequence

U1, . . . ,Us is increasing, and therefore quasi-increasing.

Now say that we know the theorem holds for t −1 where t ≥ 2. For any i ∈ [s],

let r = i+ s(t − 1), where Ur = Ai ∩Bt , and let us verify the condition in Defini-

tion 3.3.4. Note that

U j ⊂ As ∩Bt−1 = Us(t−1) for j ∈ [s(t −1)],

and that

U1+s(t−1) = A1 ∩Bt ⊂ U2+s(t−1) = A2 ∩Bt ⊂ ·· · ⊂Ust = As ∩Bt .

Then for Mr−1, the (r−1)-maximal index set from Definition 3.3.7, and i ∈ [s] we

have

Mr−1 =
{

s(t −1), s(t −1)+(i−1)
}
.

Consider the case i ≥ 2 (where |Mr−1|= 2). For vi ∈Ui, if vr = v1+ · · ·+vr−1, then

by Proposition 3.3.8 we also have

vr = w1 +w2

with w1 ∈ As ∩Bt−1 and w2 ∈ Ai−1 ∩Bt . But then w1 = vr −w2 is in Ai, since

vr,w2 ∈ Ai ∩Bt ; hence w1 ∈ Ai, and therefore w1 ∈ Ai ∩Bt−1. But both Ai−1 ∩Bt

and A1 ∩Bt−1 are subsets of Ai ∩Bt = Ur that occur in the list U1, . . . ,Ur−1. This
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establishes the quasi-increasing condition in U1, . . . ,Ur for the values of r with

i ≥ 2.

In case i = 1 we have that Mr−1 =
{

s(t − 1)
}

and the same argument works

(without a w2).

3.3.4 The Coordinated Parts of Three Subspaces

In this subsection we will prove Theorem 3.3.3 and give a related lemma which

will be useful for proving Theorem 3.1.8. Again, to prove Theorem 3.3.3, it will

suffice to prove this stronger result.

Theorem 3.3.10. Let A,B,C be subspaces of an F-universe, U . Then the sequence

U1 = A∩B∩C, U2 = A∩B, U3 = A∩C, U4 = B∩C, U5 = A, U6 = B

is quasi-increasing.

Proof. We need to verify that the sequence is quasi-increasing in positions r =

2,3, . . . ,6. Let vi ∈Ui for i ∈ [6].

For r = 2 we have U1 ⊂U2 so the condition holds.

For r = 3, U2 ∩U3 = U1, so the verification is the same as for the dimension

formula.

For r ≥ 4, since U1 ⊂U2, we can omit v1 from all equations (3.3.1).

For r = 4, U4 = B∩C, consider an equation v4 = v2+v3. Then since v4,v2 ∈ B,

the equation v3 = v4 − v2 ∈ B shows that v3 ∈ U3 ∩B = U1. Similarly one shows

v2 ∈U1. Thus, we may take v′1 = v2 + v3 ∈U1 and have v4 = v′1 ∈U1 ⊂U4.

For r = 5, we consider an equation

v5 = v2 + v3 + v4.

Since v2,v3,v5 ∈ A, then v4 ∈ A and hence v4 ∈ A∩U4 = U1 ⊂ U5. Furthermore

U1,U2,U3 ⊂ A =U5, therefore the verification is complete.

For r = 6, since U1,U2,U3 ⊂ A =U5, it suffices to consider the equation

v6 = v4 + v5.
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Since v4,v6 ∈ B we have v5 ∈ B and hence v5 ∈ B∩A =U2 ⊂ B =U6. Given that

U2,U4 ⊂U6, the verification is complete.

The same idea can be used to show that for any U1, . . . ,Um, the set of all (m−
1)-fold intersections are coordinated. However, for m ≥ 4, the set of all (m− 2)-

fold intersections can be discoordinated. For example, in F3 let

U1 = Span(e1,e2), U2 = Span(e1,e3), U3 = Span(e2,e1 + e3), U4 = Span(e3),

where the 2-fold intersections include the one dimensional spaces spanned by

e1,e2,e3, and e1 + e3. If m ≥ 5 we can set Ui = U for i ≥ 5 and have a similar

problem with the (m−2)-fold intersections.

The following lemma is helpful in showing Theorem 3.1.8 and is used in Sec-

tion 3.5.

Lemma 3.3.11. Let A,B,C,D be subspaces of an F-universe, U such that D ⊂
(A∩B). Then the sequence

U1 = A∩B∩C∩D =C∩D, U2 = A∩B∩C, U3 = D,

U4 = A∩B, U5 = A∩C, U6 = B∩C, U7 = A, U8 = B.

is quasi-increasing.

Proof. We need to verify that the sequence is quasi-increasing in positions r =

2,3, . . . ,8. Let vi ∈Ui for i ∈ [8].

For r = 2, since U1 ⊂U2, the sequence is quasi-increasing up to r = 2.

For r = 3, U2 ∩U3 = U1, so the verification is the same as for the dimension

formula.

For r = 4, Ui ⊂U4 for i ∈ [3], then the sequence is quasi-increasing up to r = 4.

For r ≥ 5, since Ui ⊂ U4 for i ∈ [3], we can omit v1,v2,v3 from all equations

(3.3.1), thus using the same argument as the proof of Theorem 3.3.10 we have that

the sequence is quasi-increasing.
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3.3.5 Strongly Quasi-Increasing Sequences

We remark that in Theorem 3.3.9 and Theorem 3.3.10 the sequences U1, . . . ,Um

have a stronger property: namely if for each r we set

M′
r = {i ∈ [m] | i ̸= r and Ur ̸⊂Ui}

(so M′
r can contain i greater than r), then we have

Ur ∩

(
∑

i∈M′
r

Ui

)
⊂ ∑

i∈M′
r

Ui.

In other words, if we rearrange the U1, . . . ,Um in any order U ′
1, . . . ,U

′
m such that

i < j implies U j ̸⊂Ui (i.e., U ′
1, . . . ,U

′
m is any total ordering that extends the partial

ordering on U1, . . . ,Um under inclusion), then we still have that U ′
1, . . . ,U

′
m is quasi-

increasing. In this case we say U1, . . . ,Um is strongly quasi-increasing. This is a

property of U1, . . . ,Um viewed as a poset under inclusion.

The quasi-increasing sequence used in Theorem 3.3.9 is strongly quasi-

increasing. The argument is similar for the sequence in Theorem 3.3.10, therefore

a detailed argument is omitted.

Consider the sets Ai ∩ B j in Theorem 3.3.9: if Ai ∩ B j ̸⊂ Ai′ ∩ B j′ (and the

A1, . . . ,Am are distinct, as well as the B1, . . . ,Bt), then either i′ < i or j′ < j; hence

Ai′ ∩B j′ is a subset of either Ai−1 ∩Bt (and i ≥ 2) or a subset of As ∩B j−1 (and

j ≥ 2). But if

vr = w1 +w2

with vr ∈ Ai ∩B j, w1 ∈ Ai−1 ∩Bt , and w2 ∈ As ∩B j−1, then writing w2 = vr −w1

shows that w2 ∈ Ai, and hence w2 ∈ Ai ∩B j−1 which lies in Ai ∩B j; similarly one

can show w1 lies in B j, which implies w1 ∈ Ai−1 ∩B j ⊂ Ai ∩B j.

We are not certain whether this strong quasi-increasing property is an accident

in these instances or holds whenever a sequence is quasi-increasing.
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3.4 The Main Discoordination Theorem
Building upon what we have done in the previous sections, the goal of this section

is to prove Theorem 3.1.4.

3.4.1 The S2 = 0 Case

Consider the case where the S2 (from Definition 3.2.6) of three subspaces of a

universe is zero, i.e., when the triple and double intersections of the subspaces are

empty. We will show the following theorem under this condition.

Theorem 3.4.1. Let A,B,C be any subspaces of an F-universe U such that A∩B =

A∩C = B∩C = 0. Let m = DisCoord(A,B,C). Then:

1. dim(A+B) = dim(A)+dim(B);

2. m = dim
(
(A+B)∩C

)
;

3. there are bases a1, . . . ,am1 of A, b1, . . . ,bm2 of B, and c1, . . . ,cm3 of C, such

that m1,m2,m3 ≥ m, and we have

ci = ai +bi for i ∈ [m],

which implies

a1, . . . ,am1 , b1, . . . ,bm2 , cm+1, . . . ,cm3 (3.4.1)

is a basis for A+B+C.

Proof. By the dimension formula, and since A∩B = 0, we have

dim(A+B) = dim(A)+dim(B).

By assumption we have S3 = S2 = 0 and since S1 = A + B +C, by Theo-

rem 3.1.9 we have

DisCoord(A,B,C) = dim(A)+dim(B)+dim(C)−dim(A+B+C) = m, (3.4.2)
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and since dim(A)+dim(B) = dim(A+B),

m = dim(A+B)+dim(C)−dim(A+B+C). (3.4.3)

The dimension formula applied to A+B and C gives us

dim(A+B)+dim(C) = dim
(
(A+B)∩C

)
+dim(A+B+C),

which combined with (3.4.3) implies m = dim
(
(A+B)∩C

)
.

Let c1, . . . ,cm be a basis for (A+B)∩C; since each ci also lies in A+B, we

may write each ci as ai +bi. We claim that a1, . . . ,am are linearly independent, for

if not then for some γ1, . . . ,γm ∈ F we have

γ1a1 + · · ·+ γmam = 0,

and hence

γ1c1 + · · ·+ γmcm =−γ1b1 − ·· · − γmbm;

but this is impossible, since the left-hand-side is a nonzero element of C, and

the right-hand-side is an element of B, which would imply that C ∩ B contains

a nonzero element, contrary to the assumption of the theorem. Similarly the

b1, . . . ,bm are linearly independent.

By basis extension, we may extend a1, . . . ,am to get a basis, a1, . . . ,am1 of A

with m1 ≥ m. Similarly we extend the b1, . . . ,bm to get a basis b1, . . . ,bm2 of B,

with m2 ≥ m. Since (A+B)∩C is a subspace of dimension m in C, with a basis

c1, . . . ,cm, we may extend this to get a basis c1, . . . ,cm3 of C with m ≥ m3. From

(3.4.2) and since by construction m1,m2,m3 are the dimensions of A,B,C we have

dim(A+B+C) = dim(A)+dim(B)+dim(C)−m = m1 +m2 +m3 −m.

Since A+B+C is spanned by a1, . . . ,am1 , b1, . . . ,bm2 , cm3−m+1, . . . ,cm3 and these

are m1 +m2 +m3 −m linearly independent vectors, we have that the collection of

vectors in (3.4.1) is a basis for A+B+C.
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3.4.2 The Lifting Lemma

Before we prove Theorem 3.1.4, it is helpful to extract a simple ingredient of the

proof that is conceptually important.

Lemma 3.4.2 (The Lifting Lemma). Let A,B,C be subspaces of an F-universe, U ,

and let

S2 = S2(A,B,C) = A∩B+A∩C+B∩C.

If for some ã, b̃, c̃ we have

[ã+ b̃]S2 = [c̃]S2 ,

then there exist a ∈ A, b ∈ B, and c ∈C such that

a+b = c

and

[a]S2 = [ã]S2 , [b]S2 = [b̃]S2 , [c]S2 = [c̃]S2 . (3.4.4)

In particular we have

[A+B]S2 ∩ [C]S2 =
[
(A+B)∩C

]
S2
.

Proof. Suppose [ã+ b̃]S2 = [c̃]S2 , then

[ã+ b̃− c̃]S2 = [0]S2

and therefore

ã+ b̃− c̃ = v1 + v2 + v3

for some v1 ∈ A∩B, v2 ∈ A∩C, and v3 ∈ B∩C. Then v2,v3 ∈C and as a result

c = c̃+ v2 + v3 ∈C.

Similarly v1 ∈ A, thus a = ã− v1 ∈ A. Taking b = b̃ we get a+b = c. Since each

v1,v2,v3 ∈ S2, we have (3.4.4).
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It is immediate that

[
(A+B)∩C

]
S2

⊂ [A+B]S2 ∩ [C]S2 ;

to prove the reverse inclusion we note that an element of the right-hand-side of

the above equation is a class [c̃]S2 with c̃ ∈ C which is also a class of the form

[ã + b̃]S2 ; but then there are a ∈ A, b ∈ B, and c ∈ C with c = a + b as in the

previous paragraph, and hence c ∈ C∩ (A+B) such that [c]S2 = [c̃]S2 .

3.4.3 Proof of the Main Theorem Regarding Three Subspaces

Proof of Theorem 3.1.4. For ease of notation let us use A,B,C instead of U1,U2,U3

to denote the three subspaces of an arbitrary F-universe, U . According to Theo-

rem 3.3.3, the subspaces

A∩B∩C, A∩B, A∩C, C∩B

are coordinated; so let X be a basis for

S2 = (A∩B)+(A∩C)+(B∩C)

that coordinates these subspaces. Consider in U/S2 the vector subspaces A′ = [A]S2 ,

B′ = [B]S2 , C′ = [C]S2 ; apply Theorem 3.4.1 to these three subspaces (whose two-

fold intersections vanish). Let

a′1, . . . ,a
′
m1
, b′1, . . . ,b

′
m2
, c′1, . . . ,c

′
m3

be the respective bases for A′,B′,C′ with c′i = a′i + b′i for i ∈ [m], where m =

DisCoordU/S2(A′,B′,C′).

Each a′j is an S2-coset, so for each j ∈ [m1] pick an arbitrary ã j ∈ U with

[ã j]S2 = a′j, similarly pick b̃k and c̃l with k ∈ [m2] and l ∈ [m3]. By Lemma 3.4.2, for

each i ∈ [m] there exist ai,bi,ci whose S2-coset is the same as ãi, b̃i, c̃i respectively,

and satisfy ai +bi = ci.
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For j > m, let a j = ã j, and similarly define bk and cl for k, l > m. Setting

X ′ = {a1, . . . ,am1 , b1, . . . ,bm2 , cm+1, . . . ,cm3}

we see that X ∪X ′ is a basis for U since X ′ is a basis of U relative to S2 and X is a

basis of S2. Let

X2 = {a1, . . . ,am, b1, . . . ,bm}

and

X1 = (X ∪X ′)\X2 = X ∪ (X ′ \X2).

Set U1 = Span(X1) and U2 = Span(X2). Then X1,X2 are disjoint sets whose union

is a basis of U , and hence U1,U2 form a decomposition of U .

We have

dim(A∩U1) = dim(A∩S2)+dimU/S2(A)−m, dim(A∩U2) = m,

and the same equalities with B and C replacing A. Then A,B,C factor through this

decomposition (note that X2 contains ci = ai +bi for i ∈ [m]).

Since dim(U2) = 2m, and if µ : U2 → F2 ⊗Fm is the isomorphism taking ai to

e1 ⊗ ei and bi to e2 ⊗ ei, then µ takes ci to (e1 + e2)⊗ ei for all i ∈ [m]. Hence µ

satisfies the required condition of Theorem 3.1.4.

Finally, we claim that X1 coordinates A∩U1,B∩U1,B∩U1. To check this for

A∩U1, we note that A∩ (X ′ \X2) is of size at least m1 −m, and thus

|A∩X1| = |A∩X |+ |A∩ (X ′ \X2)| ≥ dim(A∩S2)+m1 −m.

Since m1 = dimU/S2([A]) = dim(A)−dim(A∩S2), we have

|A∩X1| ≥ dim(A)−m.

Given that A factors through the decomposition, we know

|A∩X1| ≤ dim(A∩U1) = dim(A)−dim(A∩U2).
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Since dim(A∩U2) = m, we have |A∩X1| ≤ dim(A)−m, as a consequence

|A∩X1| = dim(A)−m = dim(A∩U1).

This shows that X1 coordinates A∩U1. Similarly we have B∩(X ′\X2) and C∩(X ′\
X2) are at least of size m2−m and m3−m respectively, with a similar argument we

conclude that

|B∩X1|= dim(B)−m = dim(B∩U1), |C∩X1|= dim(C)−m = dim(C∩U1).

Therefore X1 also coordinates B∩U1 and C∩U1.

3.5 Proof of Theorem 3.1.8
The following lemma is useful in showing Theorem 3.1.8.

Lemma 3.5.1. Let A,B,C be coordinated subspaces of a universe, U , and let

D ⊂ A∩B. Then A,B,C,D are coordinated in U and hence [A]D, [B]D, [C]D are

coordinated in U/D.

Proof. We will first show that A,B,C,D are coordinated, then use a coordinating

basis for A,B,C,D to construct a coordinating basis for [A]D, [B]D, [C]D.

Let S2 = (A∩B)+ (A∩C)+ (B∩C), by Theorem 3.3.3 all triple and double

intersections of A,B,C are coordinated.

Let X be a basis for U which coordinates A,B,C; by Theorem 3.1.4, X co-

ordinates S2. Let X1 = X ∩ S2 and X2 = X \ X1. We can decompose U into

U1 = Span(X1) = S2 and U2 = Span(X2). A,B,C,D factor through this decom-

position. Let A1 = A∩U1 and A2 = A∩U2, similarly define Bi,Ci. Note that X2 is

a coordinating basis for A2,B2,C2. Since D ⊂ (A∩B)⊂ S2 = U1, D = D∩U1 and

D∩U2 = 0.

By Lemma 3.3.11 and Theorem 3.3.6 we know

D∩C, A∩B∩C, D, A∩B, A∩C, B∩C

are coordinated; let X ′
1 be a coordinating basis for these subspaces, note that X ′

1 is
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basis for S2 and coordinates A1,B1,C1, and D. Then X ′ = X ′
1 ∪X2 is a coordinating

basis for A,B,C,D.

Let X̂ = X ′ \ (X ′∩D) =
(
X ′

1 \ (X ′
1 ∩D)

)
∪X2, then X̂ is basis for U relative to

D. Furthermore,

|X̂ ∩A|= |X ′∩A|− |X ′∩D∩A|= dim(A)−dim(A∩D) = dimU/D([A]D).

A similar statement holds for X̂ ∩B and X̂ ∩C, therefore the image of X̂ in U/D is

a coordinating basis for [A]D, [B]D, and [C]D.

Proof of Theorem 3.1.8. For ease of notation let us use A,B,C,D instead of

U1,U2,U3,W to denote the four subspaces of an arbitrary F-universe, U . Theo-

rem 3.1.4 asserts that U has a decomposition U1,U2 through which A,B,C factor,

such that

1. A1 = A∩U1, B1 = B∩U1, and C1 =C∩U1 are coordinated subspaces of U1;

2. there is an isomorphism U2 → F2 ⊗Fm that takes A2 = A∩U2, B2 = B∩U2,

and C2 =C∩U2, respectively, to

Span(e1)⊗Fm, Span(e2)⊗Fm, Span(e1 + e2)⊗Fm,

where DisCoordU2(A2,B2,C2) = DisCoordU (A,B,C).

Hence dim(A2 ∩B2) = dim
((

Span(e1)⊗Fm
)
∩
(
Span(e2)⊗Fm

))
= 0, which im-

plies A2 ∩B2 = 0. As a result we have

A∩B = (A1 ∩B1)+(A2 ∩B2) = A1 ∩B1.

Thus, D ⊂ A∩B means that D ⊂ (A1 ∩B1)⊂ U1. In this case U/D decomposes as

U1/D, U2 and by Theorem 3.1.10 we have that

DisCoordU/D([A]D, [B]D, [C]D) =DisCoordU1/D([A1]D, [B1]D, [C1]D)

+DisCoordU2(A2,B2,C2)

=DisCoordU1/D([A1]D, [B1]D, [C1]D)

+DisCoordU (A,B,C).
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Since A1,B1,C1 are coordinated subspaces of U1 and D is some linear subspace of

U1 such that D ⊂ (A1 ∩B1) by Lemma 3.5.1 we have that [A1]D, [B1]D, [C1]D are

coordinated subspaces in U1/D and

DisCoordU1/D([A1]D, [B1]D, [C1]D) = 0.

Consequently,

DisCoordU/D([A]D, [B]D, [C]D) = DisCoord(A,B,C).

3.6 Linear Information Theory Equalities
Most work in Chapter 3 up until this point has been in defining discoordination,

showing properties of this quantity, and proving Theorems 3.1.4 and 3.1.8.

In this section we drive equalities involving the discoordination of three sub-

spaces that will be used in our approach to the coded caching problem. We will

show Corollary 3.1.7. In all the following equalities let U1,U2,U3 be three sub-

spaces of an arbitrary F-universe, U . For ease of notation, let A,B,C denote

U1,U2,U3 respectively.

DisCoord(A,B,C) =dim
(
C∩ (A+B)

)
−dim(C∩A)−dim(C∩B)

+dim(A∩B∩C);

(3.6.1)

Proof of equality (3.6.1). By Theorem 3.1.4, we can decompose U into U1,U2 such

that A,B,C factor through this decomposition and

1. A∩U1,B∩U1,C∩U1 are coordinated in U1, and

2. there is an isomorphism µ : U2 → F2×Fm which takes A∩U2,B∩U2,C∩U2,

respectively to

Span(e1)⊗Fm, Span(e2)⊗Fm, Span(e1 + e2)⊗Fm.
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It suffices to show this equality holds for the decomposition of A,B,C in U1

and in U2. Consider A2 = A∩U2,B2 = B∩U2,C2 =C∩U2 under µ , then we have

DisCoord(A2,B2,C2) = m,

dim
(
C2 ∩ (A2 +B2)

)
= dim

(
Span(e1 + e2)⊗Fm)= m,

dim(C2 ∩A2) = dim(C2 ∩B2) = dim(A2 ∩B2 ∩C2) = 0.

Thus, (3.6.1) holds for A2,B2,C2.

Consider A1 =A∩U1, B1 =B∩U1, C1 =C∩U1, from Theorem 3.1.9 and since

DisCoord(A1,B1,C1) = 0 we have that

dim(A1)+dim(B1)+dim(C1) =dim(A1 ∩B1 ∩C1)

+dim
(
(A1 ∩B1)+(A1 ∩C1)+(B1 ∩C1)

)
+dim(A1 +B1 +C1),

(3.6.2)

from the dimension formula we get the following equalities

dim(A1 +B1 +C1) = dim(A1 +B1)+dim(C1)−dim
(
(A1 +B1)∩C1

)
= dim(A1)+dim(B1)+dim(C1)−dim(A1 ∩B1)−dim

(
(A1 +B1)∩C1

)
,

and3

dim
(
(A1 ∩B1)+(A1 ∩C1)+(B1 ∩C1)

)
=

dim(A1 ∩B1)+dim
(
(A1 ∩C1)+(B1 ∩C1)

)
−dim(A1 ∩B1 ∩C1).

3Since A1 ∩B1 ∩C1 ⊂ (A1 ∩C1)+(B1 ∩C1) and as we know (A1 ∩C1)+(B1 ∩C1)⊂C1, then(
(A1 ∩C1)+(B1 ∩C1)

)
∩ (A1 ∩B1)⊂ A1 ∩B1 ∩C1,

as a consequence

dim
((

(A1 ∩C1)+(B1 ∩C1)
)
∩ (A1 ∩B1)

)
= dim(A1 ∩B1 ∩C1),
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Substituting these into (3.6.2) we get

dim
(
(A1 +B1)∩C1

)
= dim

(
(A1 ∩C1)+(B1 ∩C1)

)
.

Using the above equality the right-hand-side of (3.6.1) can be written as

dim
(
(A1 ∩C1

)
+(B1 ∩C1))−dim(A1 ∩C1)−dim(B1 ∩C1)+dim(A1 ∩B1 ∩C1).

By applying the dimension formula to A1 ∩C1 and B1 ∩C1 we find that the above

expression is zero. Then (3.6.1) holds for A1,B1,C1.

Now we show the following equality from Corollary 3.1.7:

DisCoord(A,B,C) =dim((A+C)∩ (B+C))−dim(C)

+dim(A∩B∩C)−dim(A∩B);
(3.6.3)

Proof of equality (3.6.3). Similar to the argument for (3.6.1), it suffices to show

this equality holds for A1 = A∩U1, B1 = B∩U1, C1 = C ∩U1 and for A2 = A∩
U2, B2 = B∩U2, C2 =C∩U2.

Consider A2,B2,C2 under µ (from µ’s definition in Theorem 3.1.4) then we

have

DisCoord(A2,B2,C2) = m,

dim
(
(A2 +C2)∩ (B2 +C2)

)
= dim

(
Span(e1,e2)⊗Fm)= 2m,

dim(C2) = dim
(
Span(e1 + e2)⊗Fm)= m,

dim(A2 ∩B2) = dim(A2 ∩B2 ∩C2) = 0.

Thus, (3.6.3) holds for A2,B2,C2.

Since DisCoord(A1,B1,C1) = 0 we have

dim(A1 ∩B1 ∩C1) = dim(C1 ∩A1)+dim(C1 ∩B1)−dim
(
C1 ∩ (A1 +B1)

)
.
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From the dimension formula we get the following two equalities:

dim
(
(A1 +C1)∩ (B1 +C1)

)
=dim(A1 +C1)+dim(B1 +C1)−dim(A1 +B1 +C1)

=dim(A1)+dim(B1)+2dim(C1)−dim(A1 ∩C1)

−dim(B1 ∩C1)−dim(A1 +B1 +C1),

and

dim
(
C1 ∩ (A1 +B1)

)
= dim(C1)+dim(A1 +B1)−dim(A1 +B1 +C1).

The above qualities show that

dim
(
(A1 +C1)∩ (B1 +C1)

)
+dim(A1 ∩B1 ∩C1)

= dim(A1)+dim(B1)+dim(C1)−dim(A1 +B1)

= dim(C1)+dim(A1 ∩B1)

Which shows that the right-hand-side of (3.6.3) equals zero and as a result (3.6.3)

holds for A1,B1,C1.

Now we show the discoordination and mutual information equality from Corol-

lary 3.1.7.

DisCoord(A,B,C) = dim(A∩B∩C)− I(A;B;C) (3.6.4)

Proof of equality (3.6.4). Since

I(A;B;C) = I(C;A)+ I(C;B)− I(C ; B,A),

when A,B,C are considered as linear random variables we have that

I(A;B;C) = dim(C∩A)+dim(C∩B)−dim
(
C∩ (B+A)

)
.

From (3.6.1) we get that

I(A;B;C) = dim(A∩B∩C)−DisCoord(A,B,C).
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3.6.1 Equalities in Quotient Spaces

We can rewrite (3.6.3) as

DisCoord(A,B,C) = dimU/C([A]C ∩ [B]C)+dim(A∩B∩C)−dim(A∩B).

(3.6.5)

Proof. Since C ⊂ (A+C)∩ (B+C), we have that

dimU/C
([

(A+C)∩ (B+C)
]

C

)
= dim

(
(A+C)∩ (B+C)

)
−dim(C).

Given that C is a subspace of both (A+C) and (B+C) we have

dimU/C
([

(A+C)∩ (B+C)
]

C

)
= dimU/C ([A+C]C ∩ [B+C]C

)
.

Since the image of A+C in U/C equals the image of A in U/C and the same holds

for the images of B+C and B in U/C,

dimU/C ([A+C]C ∩ [B+C]C
)
= dimU/C ([A]C ∩ [B]C

)
,

and (3.6.5) follows.

Considering the notation first introduced in Subsection 3.1.5 to formalize dis-

coordination in quotient spaces, from Corollary 3.1.7, and equality (3.6.5) we have

the following useful discoordination equality.

Corollary 3.6.1. Let U1,U2,U3,W be four subspaces of an arbitrary F-universe,

U . Then

DisCoordU/W([U1]W , [U2]W , [U3]W
)
=dimU/(U3+W )

(
[U1]U3+W ∩ [U2]U3+W

)
+dimU/W ([U1]W ∩ [U2]W ∩ [U3]W

)
−dimU/W ([U1]W ∩ [U2]W

)
.
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Chapter 4

Coded Caching

So far, we have discussed and formalized linear information theory and alluded to

its expressiveness; we aim to further motivate the study of linear information theory

by demonstrating its application to the coded caching problem. In this chapter,

we formally define the coded caching problem, state what we believe to be the

“easiest” open problem in the coded caching context, review relevant literature

with a particular focus on the results of Tian [9], and show how our results in linear

information theory come at play.

4.1 Problem Statement
There is extensive literature on the many variations of the coded caching problem,

beginning with the seminal paper [7]; see [8, 10] for a survey of the literature.

We start by describing a mild simplification of Maddah-Ali and Niesen’s problem

description from [7]. We stick to their notation.

Consider a network with a central server that is connected to K users through

a shared error-free communication link; the server broadcasts to all users much

like a radio broadcast station sends signals to listeners. There is a library of N

independent files, denoted W1, . . . ,WN , each of size F bits. The whole database of

files is available to the server. On the contrary, every cache has a limited storage

capacity of MF bits, where M is some rational number and we are interested in the

case where 0 < M < N, so the caches can store some information regarding the
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files, but not all N files. Hence, each cache can only have the equivalent of M files

available in its local storage. The non-locally available content needed by a cache

has to be acquired from the server via the shared broadcast communications link.

There are two phases, in the first phase, each user can examine all NF bits of

all the files; in this phase, each user knows that in the second phase they need to

obtain one of the N files, but do not know which specific file from beforehand. This

phase usually takes place during the off-peak hours of the network operation. The

first phase is called the placement phase, in it every user fills their cache with parts

of the content from the library, meaning for i ∈ [K], user i can store Zi, a cache of

MF bits where Zi is dependent on W1, . . . ,WN .

Between the first and the second phase, each user becomes aware of which

document they will need; specifically user i specifies a value di ∈ [N]; we refer to

d = (d1, . . . ,dK) as the demand vector. The server is aware of the local content of

all the caches.

In the second phase, the delivery phase, the Zi do not change. Delivery takes

place during the time when the network is congested. In the delivery phase, the

central server is given the demand vector, d ∈ {1, . . . ,N}K , and the server broad-

casts a message Xd conditioned on the cache contents and the demand vector. Every

cache needs to reconstruct the file its corresponding user has requested using both

the content it has available locally and the message sent by the server.

By a memory-rate pair we mean a pair (M,R) of rational numbers; we say

such a pair is achievable for a given value of (N,K) if for some F ∈ N, there is a

choice of Z1, . . . ,ZK , such that for all d ∈ {1, . . . ,N}K there exists an Xd of at most

RF bits such that for all i ∈ [K], Xd and Zi determine Wdi (in other words, user i is

able to reconstruct file Wdi given Zi and Xd). For a fixed cache size M, the smallest

rate R for which (M,R) is achievable characterizes the memory-rate tradeoff. Our

focus is the problem of completely characterizing the memory-rate tradeoff for a

given value of (N,K), or when this is not possible, giving a tight lower bound on

the memory-rate tradeoff.

Example 4.1.1. Let N = K = 2; this case was solved in [7] and illustrates the main

idea. Let F = 2, and let W1 = (A1,A2) and W2 = (B1,B2) where A1,A2,B1,B2 ∈
{0,1}. We claim that the pair (M,R) = (1/2,1) is achievable: indeed, let Z1 =
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Figure 4.1: Schematic of the coded caching problem.

Figure 4.2: Schematic for Example 4.1.1
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A1 ⊕B1 and Z2 = A2 ⊕B2. Figure 4.2 demonstrates the caching scheme for this

case. For ease of notation, let us denote X(d1,...,dK) by Xd1...dK . If d = (1,1), i.e.,

both users want W1, we set X11 =W1, i.e., in the delivery phase the server broadcasts

W1 = (A1,A2). Similarly we may take X22 =W2. If d = (1,2), i.e., user 1 wants W1

and user 2 wants W2, we see that we may take X12 = (A2,B1), so that X12 and Z1

allow user 1 to determine (A1,A2) and user 2 to determine (B1,B2). Similarly we

can take X21 = (A1,B2). Hence each cache Zi stores MF = 1 bit, and each Xd can

consist of only RF = 2 bits.

Let us make a few important remarks about the coded caching problem

described. First, if the memory-rate pair (M,R) is achievable for documents

W1, . . . ,WN , of size F , then it is also achievable for documents W ′
1, . . . ,W

′
N of size

tF for any t ∈ N. Second, if (M1,R1) and (M2,R2) are achievable for fixed (N,K)

then so is any convex combination of these points, i.e., for any rational 0 ≤ α ≤ 1,

α(M1,R1)+(1−α)(M2,R2).

Third, it is simpler to allow (M,R) to be a pair of real numbers rather than rational

numbers; to do this we say that (M,R) is achievable if some limit point of (M,R)

is achievable. Fourth, there are some trivial lower bounds on (M,R); for example,

R+KM ≥ K, NR+M ≥ N,

which follow from the fact that X(1,2,...,K) and Z1,Z2, . . . ,ZK determines

W1, . . . ,WK ,1 and X(1,...,1),X(2,...,2), . . . ,X(N,...,N) and Z1 determines W1, . . . ,WN .

Fifth, in the original Maddah-Ali and Niesen definition [7], the Zi are allowed to be

random functions of the N documents rather than deterministic functions; the point

is that, using Fano’s inequality, any lower bound that uses information theory will

also produce a lower bound under their assumptions (if the Zi and Xd are random

beyond the values of the documents). Sixth, the coded caching problem can be

stated purely information theoretically with the following statements:

• H(Wi) = F for i ∈ [N], and H(W1, . . . ,WN) = NF .

1Here it is implied that K ≤ N. If K > N we have the bound R+NM ≥ N.
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• H(Zi)≤ MF and H(Xd)≤ RF for i ∈ [K], d ∈ [N]K .

• I(Xd,Zi ; Wdi) = H(Wdi) = F for i ∈ [K] and d ∈ [N]K such that d =

(d1, . . . ,dK).

4.2 Relevant Literature
Prior to our work, the strongest memory-rate tradeoff lower bounds were based

on a few ideas of [7], and one principle of [10] that can be understood as a “little

birdie” principle.

The original [7] paper on coded caching studied and completely characterized

the memory-rate tradeoff for the N =K = 2 case, by showing the following bounds:

R+2M ≥ 2, 2R+M ≥ 2, 2R+2M ≥ 3.

0 1 2
0

1

2

(1
2 ,1)

(1, 1
2)

M

R

2M+2R ≥ 3
R+2M ≥ 2
2R+M ≥ 2

Achievable Pairs

Figure 4.3: Memory-rate tradeoff for the N = K = 2 case.

The two trivial bounds, R+2M ≥ 2 and 2R+M ≥ 2 are obtained by considering

the fact that (Z1,Z2,X12) implies (W1,W2) and that (Z1,X11,X22) implies (W1,W2).

The remarkable bound of [7] is the bound 2R+2M ≥ 3, obtained by the following
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argument: they observe that

2MF +2RF ≥ H(X12 Z1)+H(X21 Z2)

where H denotes the usual entropy of a random variable (H2 from Section 2.8), and

then use

H(X12 Z1)+H(X21 Z2) = H(X12 Z1 X21 Z2)+ I(X12 Z1 ; X21 Z2)

≥ H(W1W2)+H(W1) = 2F +F = 3F.

We will derive a bound which is a refinement of this idea, where we use linear

information theory, in particular Corollary 3.1.7, to get new memory-rate lower

bounds for the N = K = 3 case.

There have been many improvements to the original methods of Maddah-Ali

and Niesen [3, 9]. One bound of [10] subsumes many of them and can be viewed as

a “little birdie” principle or an application of “genie-aided” outer bounds in infor-

mation theory. The little birdie principle is in effect the following bound (Lemma

2 in [10]):

H
(
X(d1,...,dK)

)
≥

min{N,K}

∑
i=1

H
(
Wdi | Z1 Z2 . . .Zi Wd1 Wd2 . . .Wdi−1

)
.

In the case where N = K = 3 the bound becomes

H(X123)≥ H(W1 | Z1)+H(W2 | Z1 Z2W1)+H(W3 | Z1 Z2 Z3W1W2).

With the assumption that the caches are ordered, suppose there is a “little birdie”

(or a “genie”) that gives cache i the contents of all the previous caches and the

files they reconstructed. Referring to the inequality above, the right-hand-side is

what user 1 needs to reconstruct W1, plus what user 2 needs to reconstruct W2 given

knowledge of the cache and the reconstructed requested file of user 1 plus a similar

term for user 3. Nearly all bounds in [10] are dependent on the little birdie bound

and

H(Xd)+H(Zi)≥ H(Xd, Zi)≥ H(Wdi)+H(Xd, Zi |Wdi),
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where i ∈ [K] and d ∈ [N]K such that d = (d1, . . . ,dK).

Theorems 1 and 2 of [10] give lower bounds on the optimal rate for any N and

K; for instance Theorem 2 gives the bound 2M+3R ≥ 5 for N = K = 3. They also

show that for large enough N and K ≤ 5, theorems 1 and 2 completely characterize

the memory-rate tradeoff (see Remark 7 of [10]).

In [9], Tian showed the exact memory-rate tradeoff when there are only two

users with an induction proof based on a hypothesis formed by his computer-aided

approach. Theorem 4.5 in [9] shows the memory-rate tradeoff of K = 2 and N ≥ 3

is completely characterized with the following two bounds:

3M+NR ≥ 2N, M+NR ≥ N.

Here, M +NR ≥ N is the trivial bound shown in [7] and 3M +NR ≥ 2N is a new

result from [9].

Remarkably, Tian completely characterized the memory-rate tradeoff for N = 2

and K = 3 by showing the non-trivial bound 3M + 3R ≥ 5. Meaning, in both

cases, K = 2,N ≥ 2 and K = 3,N = 2, the memory-rate tradeoff is completely

characterized.

Tian’s work also shows that K = N = 3 and N = 2,K = 4 both require at least 3

non-trivial bounds for their complete memory-rate characterization. Furthermore,

the currently known bounds for K = N = 3 are tight everywhere except 1/3 ≤ M ≤
1 and the bounds known for N = 2,K = 4, are tight everywhere except 1/4 ≤ M ≤
2/3. We suspect the easiest2 open problem is likely (N,K) = (3,3).

4.3 The Methods of Tian for N = K = 3
Let us refer to [9] by referring to the work’s author, Dr. Chao Tian. As stated

in Section 4.2, Tian generated many memory-rate lower bounds using a computer

aided search through linear programs based on the information of collections of

Zi, Xd, and Wi. Let us focus on the case N = K = 3, which is—according to the

methods of Tian—likely the “easiest” open case of coded caching. Previous to

2One can argue that (N,K)= (2,4) is the “easiest” open problem, however given the work done in
[3] for coded caching when N and K are equal, the N = K = 3 case is more studied a more intriguing
instance of the code caching problem.
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Tian’s work, the optimal value of R was known for all M except 1/3 ≤ M ≤ 1. The

fact that (M,R) = (1,1) is attainable was proven by [7], who showed that

3R+M ≥ 3, 3R+2M ≥ 5,R+3M ≥ 3,

and that these lower bounds are tight for M ≥ 1, since (M,R) =

(1,1),(2,1/3),(3,0) are achievable. It was shown that (M,R) = (1/3,2) is achiev-

able by [3], which settles the M ≤ 1/3 case via 3R+M ≥ 3. Tian shows that for

1/3 ≤ M ≤ 1 we have two inequalities

M+R ≥ 2, 2M+R ≥ 8/3;

the intersection point of these lines is (M,R) = (2/3,4/3), and Tian shows that

such a scheme cannot be given with all the Zi and Xd being linear functions of the

bits of W1,W2,W3.

0 1 2 3
0

1

2

3

(1
3 ,2)

(1,1)

(2, 1
3)

M

R

Achievable pairs
2M+R ≥ 8/3

R+M ≥ 2

Figure 4.4: Memory-rate tradeoff for the N = K = 3 case (without our re-
sults). Note that the memory-rate tradeoff is fully characterized for all
M except 1

3 ≤ M ≤ 1 (the shaded region).

Tian’s linear program shows that with m = 1/3 = M/2 (Table 4 in [9]), we
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have

H(Z1 |W1) = 2m, H(Z1 |W1W2) = m,

H(Z1Z2 |W1W2) = 2m, H(Z1Z2Z3 |W1W2) = 3m.

This allows him to conclude (see discussion below Table 4 in [9]), if all random

variables are linear functions of the bits of W1,W2,W3, then F must be divisible by

3 (if we are to achieve (2/3,4/3) with a given value of F), hence we can subdivide

the bits of each Wi into three groups,

W1 = A1A2A3, W2 = B1B2B3, W3 =C1C2C3, (4.3.1)

each group of size F/3 (in some cases we might denote the division of Wi into 3

parts by Wi1Wi2Wi3 for ease of notation), and we have

Zi = Li(Ai,Bi,Ci) (4.3.2)

where Li is some linear function. Tian gives an argument to show that no such

Li can achieve (M,R) = (2/3,4/3). In fact, Tian’s argument shows that under a

certain subset of the above conditions, we must have 2R+ 3M ≥ 5. Let us make

this precise.

Definition 4.3.1. Let Linear Coded Caching be when the caches and server re-

sponses are linear codes of the files; meaning when we constrain the coded caching

problem to linear codes. This means all the random variables in the problem (i.e.,

the Zi,Wj, and Xd) are classical linear random variables (see Definition 2.8.1). Fur-

ther, let the random variables represent their corresponding linear random variable

(see Definition 2.8.4) which can be considered as a linear subspace of some F-

universe where F= Z/2Z.

Definition 4.3.2. Consider the case of coded caching for N = K = 3, where F is

divisible by three, and each files is subdivided in groups of F/3 bits as in (4.3.1).

We say that Z1,Z2,Z3 are separated (respectively, separated linear) if we have

(4.3.2) for each i ∈ [3], for some function (respectively, linear function) Li.

Tian’s argument in Section 5.4 of [9], in effect, proves the following theorem.
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Theorem 4.3.3. For the linear coded caching problem with N = K = 3 and F

divisible by 3, let the bits of W1,W2,W3 be subdivided into groups of F/3 bits as in

(4.3.1). If the Zi are separated linear and

Zi = (Ai ⊕Bi, Bi ⊕Ci)

for all i ∈ [3], then3

2R+3M ≥ 5.

Moreover, if R′F = dim(X123), then 2R′+ 3M ≥ 5, and similarly with the indices

1,2,3 permuted in any way.

Proof. The dimension of X123 is R′F for some R′ ≤ R; we will show that

2R′+3M ≥ 5.

Let us introduce coordinates on W =W1 +W2 +W3 so that each element of W , and

therefore of X123 (and Z1,Z2,Z3), is associated with a vector of 3F scalars (i.e. an

element of F3F with F= Z/2Z).

Choose an arbitrary basis, A1, of A1, and similarly bases choose A2, . . . ,C3 of

A2, . . . ,C3. Hence each basis contains F/3 elements of some Wi, and we let W be

the union of these bases, meaning W =A1 ∪·· ·∪C3.

If u∈W , we use ιW(u), or simply ι(u), to denote the element of F3F associated

with u in the coordinates W; then ι can be viewed as an isomorphism W → F3F .

It will be useful to describe vectors in F3F as blocks of 9 vectors (and similarly for

matrices each of whose rows are vectors in F3F ); in this case we have ordered W
as

A1,A2,A3,B1,B2,B3,C1,C2,C3

(the order of the basis elements in each block A1, . . . ,C3 is unimportant).

We have that ι(X123) is a subspace of F3F ; choosing an arbitrary basis of X123

3This theorem holds for any separated linear caching scheme in which Zi,Xd implies Wdi and
{W ji | j ∈ [N]such that j ̸= d j}. For instance, Z1X123 implies W1,B1,C1. Another scheme which
satisfies these conditions is Zi = (Ai,Bi,Ci).
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and letting G be the matrix whose rows are ι of these basis vectors we get

ι(X123) = RowSpace(G)

(the row space of G) where G is an R′F ×3F matrix which we view as consisting

of 9 blocks

G =
[
G1 G2 G3 · · · G9

]
.

Similarly, by choosing a basis for Z1, we get

ι(Z1) = RowSpace(G′)

where G′ is an MF ×3F matrix which we view as consisting of 9 blocks

G′ =
[
G′

1 G′
2 G′

3 · · · G′
9

]
.

It follows that ι(X123 +Z1) equals the row space of the block matrix

ι(X123 +Z1) = RowSpace

([
G′

G

])
,

where [
G′

G

]
=

[
G′

1 G′
2 G′

3 G′
4 G′

5 G′
6 G′

7 G′
8 G′

9

G1 G2 G3 G4 G5 G6 G7 G8 G9

]
.

Consider this matrix with its columns rearranged into two blocks as such

G̃ =

[
G′

1 G′
2 G′

3 G′
4 G′

7 G′
5 G′

6 G′
8 G′

9

G1 G2 G3 G4 G7 G5 G6 G8 G9

]
;

we can see that G and G̃ have the same rank. By assumption X123 and Z1

determine A1,A2,A3,B1,C1, then X123 + Z1 contains each vector of the bases

A1,A2,A3,B1,C1. Hence, ι(X123+Z1) contains each standard basis vector associ-

ated the these five bases. By the basis exchange theorem4, we can apply elementary

4We remark that the rows of G′ and of G are not necessarily independent, namely if Z1 and X123
have a non-trivial intersection. Still, we can choose a subset of the rows of the matrix formed by
the rows of G′ and G and apply the basis exchange theorem there. Alternatively, the same argu-
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(i.e., invertible) row operations on G̃ to get a matrix

Ĝ =

[
I 0

L1 L2

]
,

where I is a 5F/3×5F/3 identity matrix, and 0 is a 5F/3×4F/3 zero matrix, and

L1,L2 are some matrices; since the total number of rows of G̃ is at most MF +R′F ,

the number of rows in the L1,L2 block matrix is at most (M +R′−5/3)F . Hence

the column space of the two rightmost blocks,

ColumnSpace

([
0

L2

])

is at most (M +R′− 5/3)F . The row operations changing G̃ to Ĝ do not change

the column space of any subset of columns of these matrices, then the span of the

columns of [
G′

5 G′
6 G′

8 G′
9

G5 G6 G8 G9

]
(4.3.3)

is of dimension at most (M +R′−5/3)F . In particular, the same bound holds for

the span of the columns of [
G5 G6 G8 G9

]
. (4.3.4)

By symmetry, using Z2, the column space of[
G1 G3 G7 G9

]
has dimension at most (M +R′−5/3)F ; using Z3, the same holds for the column

space of [
G1 G2 G4 G5

]
.

Since each column of G appears once or twice in the three block matrices above,

ment works if G′ consists only of rows such that the block matrix of rows of G′ and G are linearly
independent, and the row space of this combined matrix equals ι(X123 +Z1).
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the entire column space of G has dimension at most

3(M+R′−5/3)F.

But the dimension of the column space of G is the rank of G, which by assumption

equals R′F , hence

R′ = Rank(G)≤ 3(M+R′−5/3)F

It follows that 3M+2R′ ≥ 5.

Table 4 in [9] implies that if (M,R) = (2/3,4/3) is achievable by a linear

caching scheme, then the Zi must be as in Theorem 4.3.3. This contradicts the

hypothesis of Theorem 4.3.3 and leads Tian to conclude that (M,R) = (2/3,4/3)

cannot be achieved by any separated linear coding scheme given that the values of

Table 4 in [9] hold exactly.

We remark that Theorem 4.3.3 does not really analyze X123 directly, rather it

draws conclusions based on the particular nature of the Zi and the fact that X123 and

Zi determine Wi.

4.4 Symmetrization and Averaging
Let us review useful forms of averaging to simplify certain expressions in coded

caching.

4.4.1 Symmetrization as Averaging

The symmetric group SK of permutations on {1, . . . ,K} acts on the K users of a

coded caching problem, and similarly SN acts on the N documents. Since these

two actions are independent of each other (i.e., can be performed in either order),

this gives us an action of SK × SN on all the expressions involving the indices of

Wi,Zi,Xd: namely for κ ∈ SK and ν ∈ SN , we set

(κ,ν)Wi =Wν(i), (κ,ν)Zi = Zκ(i),
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and

(κ,ν)Xd = X(κ,ν)d, where (κ,ν)d = (κ,ν)(d1, . . . ,dK) =
(
ν(dκ(1)), . . . ,ν(dκ(K))

)
(since each di represents a value in [N] of a document requested by a user i ∈ [K]).

The action of SK × SN similarly extends to any combination of W ’s, Z’s, and

X’s. We use dimavg to denote the average dimension of any expression under this

group action. For example, for K = N = 3,

dimavg(Z1 +W1 +W3 +X122) =

1
K! N! ∑

(κ,ν)∈SK×SN

dim
(
Zκ(1)+Wν(1)+Wν(3)+X(κ,ν)(1,2,2)

)
.

Hence we have

dimavg(Z1 +W1 +W3 +X122) = dimavg(κ,ν)(Z1 +W1 +W3 +X122)

for any κ ∈ SK and ν ∈ SN , for instance

dimavg(Z1 +W1 +W3 +X122) = dimavg(Z3 +W1 +W2 +X331).

We can use he same idea to define DisCoordavg(Wi,Wj,Zk) for any i, j ∈ [N] and

any k ∈ [K] in the context of the linear coded caching problem. More precisely, we

have

DisCoordavg(Wi,Wj,Zk) =
1

K! N! ∑
(κ,ν)∈SK×SN

DisCoord
(
Wν(i),Wν( j),Zκ(k)

)
.

This averaging technique is convenient in proving lower bounds on achievable

memory-rate pairs. See [10], for particular uses of this technique; we will use

it in our bounds as well.

4.4.2 Symmetric Coded Caching Schemes

In [9], Tian prefers to symmetrize the coded caching schemes beforehand. In other

words, for a given coded caching scheme on documents of size F , each element of
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SK ×SN yields a new scheme of size F , and by concatenating the schemes he gets

a new scheme on documents of size K!N!F bits such that the dimension of any

expression in the W ’s, Z’s, and X’s is invariant under the action of SK × SN . See

Proposition 3 of Section 3.3 of [9].

The same follows for proving lower bounds, it suffices to consider the case

where the coded caching scheme has dimensions of all expressions in W,Z,X that

are invariant under this SK × SN action (i.e., the case where dim and dimavg are

equal).

4.4.3 A Lopsided Example: Average and Worst Case

To motivate symmetrization, we give the following example of a “highly non-

symmetric” (or “lopsided”) scheme with N = K = 3 where X123 can be taken to

be 0. Here we are assuming Xd and Zi are linear functions of W1,W2,W3.

Consider the case M = 1 where we set Zi = Wi for all i ∈ [3]. In this case

we can take X123 = 0. While Theorem 4.3.3 shows that X123 has dimension R′F

with R′ ≥ (5−3M)/2, the same cannot be said of this particular scheme as it does

not follow the conditions of theorem. To show 2R+ 3M ≥ 5 holds we need to

prove that some Xi jk must have dimension at least (5−3M)/2. We remark that if

we use symmetrization and somehow prove that some Xi jk has dimension at least

(5−3M)/2 we also prove the stronger fact that the average dimension of Xi jk with

i, j,k distinct is at least (5−3M)/2.

It is instructive to compare the average versus worst case here. We may take

X213 = W1 ⊕W2, so that X213 can be of dimension F , and similarly (the two other

single transpositions) X321 and X132 can be taken to have dimension F . However,

we claim that that X312 must be of dimension at least 2F under this scheme: indeed,

for X312 and Z1 to determine W3, X312 must contain W3 +L1(Z1) for some linear

map L1, and similarly X312 must contain W1 +L2(Z2) and W2 +L3(Z3) for linear

maps L2,L3 to determine W1 and W2 given Z2 and Z3 respectively. Therefore, X123

has the same row space as a matrix of the formL1 0 I

I L2 0

0 I L3

 ,
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where 0 and I are respectively zero and identity matrices of size F ×F and the Li

are F ×F matrices corresponding to the Li. Then, X312 has the same row space as

the above 3F by 3F matrix. By dropping the first row and last column, we see that

X123 has rank at least that of [
I L2

0 I

]
.

We can eliminate the L2 from the above matrix with row operations, leaving an

identity matrix of size 2F × 2F . Consequently, the dimension of X312 must be at

least 2F (and this suffices, since we can verify that setting X312 to be W1⊕W2,W1⊕
W3 satisfies the conditions of each user). A similar calculation holds for X231 which

is the other full cycle permutation.

Hence, under the lopsided scheme Zi =Wi, the maximum dimension of an Xi jk

is 2F , and the average over all distinct i, j,k is at least (3 ·F +2 ·2F)/6 = 7F/6.

4.5 The Z-Decomposition Lemma
In this section we describe what an individual Zi must look like in terms of its linear

algebra in the linear coded caching problem for N = K = 3.

Definition 4.5.1. Let Z be linear subspace of an F-universe, U . Suppose Z has

dimension n and U has a decomposition A,B,C. We say that

1. Z is a pure individual scheme if Z is spanned by A′ = Z ∩A, B′ = Z ∩B, and

C′ = Z ∩C, in which case Z = A′+B′+C′;

2. Z is a pure Tian scheme5 if there exist A′ ⊂ A, B′ ⊂ B, and C′ ⊂C such that

A′,B′,C′ are of the same dimension, m = n/2, and there are bases a′1, . . . ,a
′
m

of A′, b′1, . . . ,b
′
m of B′, and c′1, . . . ,c

′
m of C′ such that Z is spanned by a′i +

b′i,b
′
i + c′i for i ∈ [m]; hence, in the notation of Subsection 2.3.1, we have Z

is the span of A′⊕µ1 B′ and B′⊕µ2 C′ where µ1 is the isomorphism A′ → B′

taking a′i to b′i for all i ∈ [m], and similarly for µ2 : B′ →C′ taking b′i to c′i;

3. Z is a pure AB-scheme if there exist A′ ⊂ A, B′ ⊂ B such that A′,B′ are of the

same dimension, n, and there are bases a′1, . . . ,a
′
n of A′, b′1, . . . ,b

′
n of B′ such

5The name “Tian scheme” is used here since in [9], Tian stated Theorem 4.3.3 by assuming the
caches are of this form (i.e., Zi = (Ai ⊕Bi),(Bi ⊕Ci) for i ∈ [3]).
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that Z is spanned by a′i + b′i for i ∈ [n]; hence Z = A′⊕µ B′ where µ is the

isomorphism A′ → B′ taking a′i to b′i for all i;

4. we similarly define when Z is a pure AC-scheme or a pure BC-scheme; and

5. Z is a pure triple sum scheme if there exist A′ ⊂ A, B′ ⊂ B, and C′ ⊂C such

that A′,B′,C′ are of the same dimension, n, and there are bases a′1, . . . ,a
′
n of

A′, b′1, . . . ,b
′
n of B′, and c′1, . . . ,c

′
n of C′ such that Z is spanned by a′i +b′i + c′i

for i ∈ [n]; in this case Z = A′⊕µ1 B′⊕µ2 C′, where µ1,µ2 are, respectively,

the isomorphisms A′ → B′ and A′ → C′ taking a′i to, respectively, b′i and c′i
for all i.

Lemma 4.5.2. Let Z be linear subspace of an F-universe, U , where U has a decom-

position A,B,C. Then there exist subspaces A j,B j,C j indexed on integers j ∈ [5]

such that

1. A1, . . . ,A5 are linearly independent subspaces of A, as are B1, . . . ,B5 ⊂ B

and C1, . . . ,C5 ⊂C;

2. Z is spanned by:

• A1 +B1 +C1 (i.e., an individual scheme);

• A2 ⊕B2, B2 ⊕C2 (i.e., a Tian scheme);

• A3⊕B3, A4⊕C3, B4⊕C4 (i.e., an AB-, AC-, and a BC-scheme6 ); and

• A5 ⊕B5 ⊕C5 (i.e., a triple scheme).

Our intended application is to caches, Zi, in the linear coded caching problem

for the N = K = 3 case. This lemma shows that any cache is really some combi-

nation of the caching schemes in Definition 4.5.1. In a symmetrized scheme, the

dimensions of all subspaces with superscripts 3 and 4 are equal.

Our proof is quite straightforward, although somewhat tedious. The strategy

is to define the spaces in the following order: A1,B1,C1, then A2,B2,C2, then

A3,B3,A4,C3,B4,C4, and then A5,B5,C5. In each stage we make the necessary

definitions and then show a number of properties of these spaces. Ultimately we

6When grouping the AB-, AC-, and a BC-schemes together with the condition that they are of the
same size, i.e., they are symmetrized, we might refer to them as a symmetric two-way scheme.
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need to show that the A1, . . . ,A5 are linearly independent, similarly show the linear

independence of the Bi’s and Ci’s. Then we need to decompose any a+b+ c ∈ Z

with a ∈ A, b ∈ B, and c ∈C as a unique sum of the above schemes; the uniqueness

is immediate from the linear independence of these subspaces.

Proof. Set A1 = Z ∩A, B1 = Z ∩B, and C1 = Z ∩C.

Say that an u ∈ U is B-pairable if for some b ∈ B we have u+ b ∈ Z. Let us

show that if u is B-pairable with b, then

u is B-pairable with b′ ∈ B ⇐⇒ b = b′+b1 for some b1 ∈ B1 = Z ∩B; (4.5.1)

“⇒” follows from the fact that if u+ b and u+ b′ both lie in Z, and then so does

(u+b)− (u+b′); hence b+b′ ∈ Z; since b,b′ ∈ B, we have b+b′ ∈ Z ∩B.

“⇐” follows from the fact that if b = b′+b1 with b1 ∈ B1, then b′ lies in B. Since

u+b = (u+b′)+(b1) ∈ Z, for b1 ∈ Z, then u+b′ ∈ Z.

We similarly define A-pairable and C-pairable. A similar remark holds for an

element a ∈ A that pairs with some u ∈ U , and for a c ∈ C that pairs with some

u ∈ U .

The set of elements of A that are B-pairable is a subspace A′ ⊂A which contains

all a ∈ A1 (taking b = 0). Similarly, let the subspace A′′ ⊂ A be the set of elements

of A that are C-pairable. Then A′ ∩ A′′ contains A1; let a2
1, . . . ,a

2
d be a basis of

A′ ∩A′′ relative to A1. For any i ∈ [d], choose a b2
i ∈ B and a c2

i ∈ C such that

a2
i +b2

i and a2
i + c2

i lie in Z.

We claim that the b2
1, . . . ,b

2
d are linearly independent in B/B1: if not then some

linear combination of the b2
i lies in B1, and hence the corresponding linear combi-

nation of the a2
i , say a, has a+0 ∈ Z; but then a ∈ Z, and so a ∈ A1, contradicting

the fact that a2
1, . . . ,a

2
d is a basis relative to A1. Similarly the c2

1, . . . ,c
2
d are linearly

independent in C/C1.

Let A2 be the span of the a2
i . Similarly let B2 and C2 be the span of the b2

i

and c2
i respectively. Then B2 is linearly independent from B1, by the above argu-

ment, and similarly C2 is linearly independent from C1; by definition A2 is linearly

independent from A1.

By the definition of A′,A′′, and A1, an element a ∈ A is both B- and C-pairable

iff a ∈ A′∩A′′ = A1 +A2. Let us prove the analogous statement holds with A,B,C
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exchanged: e.g., let us prove that if b ∈ B is both A- and C-pairable, then b ∈
B1 +B2. For any such b there are a ∈ A and c ∈C such that b+a,b+ c,a+ c ∈ Z;

hence a = a1 + a2 with ai ∈ Ai for i = 1,2. Then there exists b2 ∈ B2 paired with

a2, and a+b2 = (a2+b2)+a1 ∈ Z. Thus a is B-paired with b2 ∈ B and with b ∈ B,

by (4.5.1), b = b2 + b1 for some b1 ∈ B1, meaning b ∈ B1 +B2. Similarly, some

c ∈C is both A- and B-pairable iff c ∈C1 +C2.

Let us now construct A3,A4,B3,B4,C3,C4 with the desired properties. Pick

a basis, a3
1, . . . ,a

3
s of A′ relative to A′ ∩A′′, and let A3 be the span of this relative

basis; similarly pick a basis a4
1, . . . ,a

4
t , of A′′ relative to A′∩A′′ and let A4 denote the

span of this relative basis. By the dimension formula A1 +A2, A3, A4 are linearly

independent. For each a3
i , choose a b3

i such that a3
i +b3

i ∈ Z, and similarly pick a b3
i

such that a4
i +c3

i ∈ Z. We claim that the b3
i are linearly independent in B/(B1+B2);

otherwise we would get a corresponding linear combination of the a3
i , say a, with

a+0 ∈ Z, contradicting the the fact that a3
1, . . . ,a

3
s form a relative basis. The same

argument with the B’s and b’s replaced by C’s and c’s show that the c3
i are linearly

independent in C/(C1 +C2). Let B3 be the span of the b3
i , and C3 the span of the

c3
i .

Let B̃ ⊂ B denote the subspace of C-paired elements of B; clearly, B̃ contains

B1,B2; let b4
1, . . . ,b

4
p be a basis of B̃ relative to B1 +B2. For each i ∈ [p], choose an

element c4
i such that b4

i +c4
i ∈ Z; let B4 be the span of all b4

i , and C4 the span of all

c4
i .

Due to the asymmetry in our definition the following is known about A1, . . . ,A4:

1. A1, . . . ,A4 ⊂ A are linearly independent;

2. the subspace of A of elements that are B-pairable equals A1 +A2 +A3;

3. the subspace of A of elements that are C-pairable equals A1 +A2 +A4.

We now wish to prove the analogous claims about the B j and B, and the C j and C.

Let us start with the B j and B.

1. B1,B2 are linearly independent: shown above.

2. B1,B2,B3 are linearly independent: if not, then we have b3 = b2 + b1 for

some bi ∈ Bi and i ∈ [3] with b3 nonzero (since B1,B2 are linearly indepen-

dent). Then there exist a2 ∈ A2 and c2 ∈C2 such that a2+b2,a2+c2,b2+c2
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all lie in Z. Further, there is a nonzero a3 ∈ A3 such that b3 + a3 ∈ Z. But

then a = a3 is both B-pairable (with b3) and C-pairable with −c2, since

a− c2 = a− c2 +(b3 −b2 −b1) = (a+b3)− (c2 +b2)+(b1)

and a+b3, c2 +b2, and b1 all lie in Z. Given that a = a3 is nonzero B- and

C-pairable, but not in A1 +A2 = A′ ∩A′′, we have a contradiction since by

construction A′∩A′′ contains all B- and C-pairable vectors in A.

3. B1,B2,B3,B4 are linearly independent: if not, then we have b4 = b3+b2+b1

for some bi ∈ Bi with b4 nonzero (since B1,B2,B3 are linearly independent).

Given that the b4
i form a basis of B′ relative to B1,B2, we have b3 ̸= 0. There

there exists a linear combination, c4, of the c4
i , such that b4 + c4 ∈ Z, and

similarly exists a a3 ∈ Span(a3
1, . . . ,a

3
s ) such that b3 + a3 ∈ Z. Similarly, b2

has a corresponding a2 and c2 such that both b2 + a2 and b2 + c2 lie in Z.

Since

b4 + c4, b3 +a3, b2 +a2, b2 + c2, b1

all lie in Z, we have that b3 is A-pairable and

b3 +(c4 − c2) = b4 −b2 −b1 + c4 − c2 = (b4 + c4)− (b2 + c2)−b1 ∈ Z.

Hence if a = a3, b = b3, and c = c4 − c2, then a+ b ∈ Z and b+ c ∈ Z and

hence a+c ∈ Z. Meaning a is both B- and C-pairable, but a = a3 /∈ A1 +A2,

as a3 is a linear combination of vectors in A3 alone, which is a contradiction.

4. b ∈ B is A-pairable iff b ∈ B1 +B2 +B3 (the converse holds by definition

of B1, B2, B3): if b is A-pairable with a, then a is B-pairable and hence a =

a3 + a2 + a1. There exist b3,b2 in B3,B2 respectively such that ai + bi ∈
Z for i = 2,3. But then a is B-pairable by b3 + b2, and B-pairable by b,

(4.5.1) implies that b equals some element of B1 plus b3 + b2, and hence

b ∈ B1 +B2 +B3.

5. b is C-pairable iff b ∈ B1 +B2 +B4: follows from the definition of B1,B2,

and B4.
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Now we show similar claims for the C j and C.

1. C1,C2 are linearly independent: proven above.

2. C1,C2,C3 are linearly independent: one argues just as for B1,B2,B3.

3. c4
1, . . . ,c

4
p are linearly independent: if not, then some nontrivial linear com-

bination of them is zero, and, b, the corresponding linear combination of b4
i ,

has b+ 0 ∈ Z. This implies that B4 ∩B1 is nonzero, which contradicts the

independence of B1 and B4.

4. C1,C2,C3,C4 are linearly independent: any nonzero element c4 ∈ C4 has a

corresponding nonzero b4 ∈ B4 such that c4 + b4 ∈ Z. Since c4,c2,c1 are

B-paired, then c3 = c4 − c2 − c1 is also B-paired, say with b′. By definition

any c3 ∈C3 can be A-paired, say with a′; hence

c3 +b′, c3 +a′, a′+b′

all lie in Z, and hence a′ can be both B- and C-paired, implying that a′ =

a2 + a1 for a1 ∈ A1 and a2 ∈ A2. Given that a2 can be C-paired with some

c̃2 ∈ C2, we have (a2 + c̃2)+ a1 ∈ Z. Since c3 + a′ and c̃2 + a′ are both in

Z, we have c3 + c̃2 ∈ Z, and c3 + c̃2 ∈ Z ∩C =C1. As C1,C2,C3 are linearly

independent, it follows that c3 = 0 (and c̃2 = 0), meaning c4 = c2 + c1. For

the nonzero linear combination of the c4
i that give c4, there is a corresponding

linear combination of the b4
i , b4 ∈ B4, such that b4 ̸= 0 and c4 + b4 ∈ Z.

However, since c2,c1 are both A- and B-pairable, so is c4, and for some

b′′ ∈ B, a′′ ∈ A we have

c4 +b′′, c4 +a′′, b′′+a′′

are vectors in Z. Since b4 + c4 ∈ Z, then b4 + a′′ ∈ Z. Thus b4 is A- and

C-pairable, and b4 ∈ B1+B2. But this contradicts the linear independence of

the Bi and the fact that b4 ̸= 0 for b4 ∈ B4.

5. c ∈C is A-pairable iff c ∈C1 +C2 +C3: same proof as for b ∈ B1 +B2 +B3.
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6. c ∈C is B-pairable iff c ∈C1 +C2 +C4 (the converse holds by the definition

of C1,C2,C4): Suppose c ∈ C is B-pairable with b, then b is C-pairable and

from the claims for the Bi we have that b = b4 + b2 + b1 with bi ∈ Bi for

i = 1,2,4 such that there exist c4 ∈ C4 and c2 ∈ C2 with bi + ci ∈ Z for

i = 2,4. Therefore, b is pairable with c4 + c2, and by (4.5.1), we see that c

equals c4 + c2 plus some element of C1; meaning c ∈C1 +C2 +C4.

Finally we construct A5,B5,C5: to do so, consider the subset Ã of a ∈ A such

that a+b+c∈ Z for some b∈B and c∈C. Ã is a subspace, and contains A1, . . . ,A4;

let a5
1, . . . ,a

5
q be a basis of Ã relative to A1+A2+A3+A4, and for each i∈ [q] choose

b5
i and c5

i such that a5
i + b5

i + c5
i ∈ Z. Let A5,B5,C5, respectively, be the spans of

the a5
i , the b5

i , and the c5
i . We prove the following claims, all with ideas similar to

the ideas above.

1. A1, . . . ,A5 are linearly independent: immediate from the definition of a5
i .

2. If a+b+c ∈ Z for some a ∈ A, b ∈ B, c ∈C, then a ∈ A1 + · · ·+A5: follows

from the definition of Ai.

3. If a+b+c∈ Z for some a∈A, b∈B, c∈C, and a= a1+ · · ·+a5 with ai ∈Ai

such that a5 ̸= 0, then b /∈B1+B2+B3+B4: otherwise b= b1+ · · ·+b4 with

bi ∈ Bi; in this case we have c4 ∈ C4 such that b4 + c4 ∈ Z and ãi ∈ Ai for

i = 2,3 with ãi +bi ∈ Z. Since a+b+ c is in Z, then

(a1 + · · ·+a5)+(b1 + · · ·+b4)+ c ∈ Z

it follows that

(a1 + · · ·+a5 − ã2 − ã3)+b1 + c− c4 ∈ Z,

and hence

(a1 + · · ·+a5 − ã2 − ã3)+(c− c4) ∈ Z,

meaning a1 + · · ·+a5 − ã2 − ã3 is C-pairable and therefore lies in A1 +A2 +

A4. But this is impossible since a5 ̸= 0 and A5 is linearly independent from

A1, . . . ,A4.
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4. If a+ b+ c ∈ Z for some a ∈ A, b ∈ B, c ∈ C, and a = a1 + · · ·+ a5 with

ai ∈ Ai such that a5 ̸= 0, then c /∈C1 +C2 +C3 +C4: can be shown with an

argument similar to the one above.

5. The b5
i are linearly independent: if not, then for the corresponding linear

combination of a5
i , say a5, and for the corresponding linear combination

of c5
i , say c5 with a5,c5 ̸= 0 we have that a5 + c5 ∈ Z. But then a5 is C-

pairable and must lie in A1+A2+A4, which contradicts the independence of

A1, . . . ,A5 shown above.

6. The c5
i are linearly independent: can be shown with a similar argument to

the one above.

7. B1, . . . ,B5 are linearly independent: if they are dependent, then we have

b5 = b1 + · · ·+b4 with bi ∈ Bi where at least one of the bi is nonzero; since

B1, . . . ,B4 are linearly independent, we know that b5 ̸= 0. By definition there

exist nonzero a5 ∈ A5 and nonzero c5 ∈ c5 such that b5 +a5 + c5 ∈ Z. Addi-

tionally for i ∈ [3], there exist ai ∈ Ai such that ai + bi ∈ Z and there exists

c4 ∈ C4 such that c4 + b4 ∈ Z. Let a = a5 − a3 − a2; since b5 + a5 + c5 ∈ Z

we have

(b1 +b2 +b3 +b4)+a5 + c5 ∈ Z.

which implies

(a5 −a2 −a3)+(c5 − c4) = a+(c5 − c4) ∈ Z.

This means a is C-pairable and a ∈ A1 +A2 +A4. Since a5 ̸= 0, this contra-

dicts the linear independence of A1, . . . ,A5.

8. The C1, . . . ,C5 are linearly independent: can be shown with similar argument

to the one above.

9. If a+ b+ c ∈ Z for some a ∈ A, b ∈ B, c ∈ C, then b ∈ B1 + · · ·+B5: we

have a ∈ A1 + · · ·+A5, by definition of the Ai, thus there exist ai ∈ Ai such

that a = a1 + · · ·+ a5. It follows that a5 + b5 + c5 ∈ Z for some nonzero

b5,c5 in B5 and C5, respectively. Further, a2 +b2 ∈ Z for some b2 ∈ B2, and
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similarly a3 + b3 and a4 + c3 are in Z for some b3 ∈ B3 and c3 ∈ C3. Given

that (a1 + . . .+a5)+b+ c ∈ Z, it follows that

(b−b2 −b3 −b5)+(c− c3 − c5) ∈ Z,

and hence b−b2−b3−b5 is C-pairable, consequently, it lies in B1+B2+B4.

Given that B1, . . . ,B5 are linearly independent and b5 ̸= 0, we conclude that

b ∈ B1 + · · ·+B5.

10. If a+b+ c ∈ Z for some a ∈ A, b ∈ B, c ∈C, then c ∈C1 + · · ·+C5: can be

shown with a similar argument to the one above.

At this point we claim that Z consists precisely of the sums given in the lemma.

Namely, say that a+b+c∈ Z with a∈A, b∈B, c∈C. Then write a as a1+ · · ·+a5

for some ai ∈ Ai. Corresponding to a5 ∈ A5 there are b5 ∈ B5 and c5 ∈C5 such that

a5 +b5 + c5 ∈ Z, there exists b2 ∈ B2, b3 ∈ B3, and c3 ∈C3 such that

a2 +b2, a3 +b3, a4 + c3

all lie in Z. Let b̃ = b+b5 +b3 and c̃ = c+ c5 + c4 then we have

a1 + b̃+ c̃ ∈ Z,

and hence b̃+ c̃ ∈ Z. It follows that b̃ is C-pairable, which implies that b̃ = b̃1 +

b̃2 + b̃4 with b̃i ∈ Bi. Then corresponding to b̃2, b̃4 there are c̃2 ∈ C2 and c̃4 ∈ C4

such that b̃i + c̃i ∈ Z for i = 2,4. Let b̂ = b̃2 + b̃4 and ĉ = c̃2 + c̃4, now we have

b′ = b̃+ ĉ = b̃1 ∈ Z ∩B and c′ = c̃+ b̂ = c̃1 ∈ Z ∩C. So far we have written

a = a1 + · · ·+a5, b = b′+ b̃2 +b3 + b̃4 +b5, c = c′+ c̃2 + c3 + c̃4 + c5,

(with b′ ∈ B1, c′ ∈C1, b̃i or bi in Bi, c̃i or ci in Ci, and ai ∈ Ai). Consequently, we

have written any triple (a,b,c) ∈ U with a+b+ c ∈ Z as a sum of elements of the

schemes in the lemma. Meaning that Z is the sum of the schemes in the lemma.

Conversely, any triple (a,b,c) that is the sum of the elements (i.e. a∈A1+ . . .+A5,

etc.) of these schemes must have a+ b+ c ∈ Z. Since the A1, . . . ,A5 are linearly
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independent, as are the Bi’s and Ci’s, the decomposition of any such triple (a,b,c)

is unique.

4.6 A New Caching Scheme for N = K = 3 and M = 1/2
In this section we give a caching scheme for the coded caching problem in the N =

K = 3 case which shows the memory-rate pair (M,R) = (1/2, 5/3) is achievable.

Theorem 4.6.1. In the coded caching problem with N = K = 3 and F divisible by

6, the memory-rate pair (M,R) = (1/2, 5/3) is achievable.

Proof. It suffices to give a caching scheme for N = K = 3 and M = 1/2 such that

the worst case server broadcast size over all possible user demands is 10
6 F .

Similar to (4.3.1), let us partition the Wi into six disjoint parts where

Wi =Wi1,Wi2,Wi3 , Wi1 =W ′
i1,W ′′

i1 for every i ∈ [3].

In our scheme the caches will be of the following form:

Z j =W ′
1 j ⊕W ′

2 j , W ′′
1 j ⊕W ′

3 j , W ′′
2 j ⊕W ′′

3 j for every j ∈ [3].

Referring back to Lemma 4.5.2, the Z j here are separated linear and contain equal

parts of an W1W2-, W1W3-, and W2W3-scheme (i.e., a pure symmetric two-way

scheme). Since this caching scheme is symmetric it is enough to show there exists

a response from the server of size at most 10
6 F for each “demand type”7.

When d = (i, i, i) for some i ∈ [N], Xd = Xiii =Wi which is F bits.

When d = (i, j,k) for some i, j,k ∈ [N] such that exactly two of the user re-

quests are equal, there exists Xd of size 10
6 F such that all users can reconstruct their

requested files. For instance, take

X112 = (W ′
11 ⊕W ′

12),W ′′
11,W ′′

12,W ′
13,W ′′

13,W ′
21,W ′

22,W ′′
21,W ′′

22,W ′′
23.

7Referring to the number of unique files in the demand vector. For N = K = 3 there are 3 demand
types, when all users demand the same file, when only two demand the same file, and when all
demand distinct files.
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Here X112 is comprised of 10 blocks each of size F/6 bits. Since W ′
21 ⊂ X112

and (W ′
11 ⊕W ′

21) ⊂ Z1, then W ′
11 ⊂ (X112, Z1) and hence W ′

12 ⊂ (X112, Z1). Thus,

W1 ⊂ (X112, Z1). A similar argument shows that W1 ⊂ (X112, Z2). Note that X112

contains all sections of W2 other than W ′
23. Since W ′

13 ⊂ X112 and (W ′
13⊕W ′

23)⊂ Z3,

then W ′
23 ⊂ (X112, Z3). As a result W2 ⊂ (X112, Z3).

When d = (i, j,k) for some distinct i, j,k ∈ [N], there exists Xd of size 10
6 F

such that all users can reconstruct their requested files. For instance let X123 =

(A,B,C,D,E) where

A =W ′
12,W ′′

13,W ′
21,W ′′

23,W ′
31,W ′′

32 ,

B = (W ′′
12 ⊕W ′′

21 ⊕W ′′
31),

C = (W ′
13 ⊕W ′′

21 ⊕W ′′
31),

D = (W ′′
21 ⊕W ′′

12 ⊕W ′
32),

E = (W ′′
21 ⊕W ′′

31 ⊕W ′′
12 ⊕W ′

32 ⊕W ′
13 ⊕W ′

23).

Here X112 is comprised of 10 blocks each of size F/6 bits. Then

B⊕E = (W ′
32 ⊕W ′

13 ⊕W ′
23),

C⊕E = (W ′
23 ⊕W ′′

12 ⊕W ′
32),

D⊕E = (W ′′
31 ⊕W ′

13 ⊕W ′
23).

We have that (W ′
11,W ′′

11,W
′
12,W ′′

13) ⊂ (Z1, A). Since (W ′′
21 ⊕W ′′

31) ⊂ Z1, then

W ′′
12 ⊂ (Z1, B) and W ′

13 ⊂ (Z1, C). Hence, W1 ⊂ (Z1, X123). Similarly, we

have (W ′
22,W ′′

22,W
′
21,W ′′

31) ⊂ (Z2, A). Since (W ′′
12 ⊕ W ′

32) ⊂ Z2, then W ′
23 ⊂

(Z2, D) and W ′
23 ⊂

(
Z2, (C ⊕ E)

)
. Thus, W2 ⊂ (Z2, X123). Lastly, we have

(W ′
33,W ′′

33,W
′
31,W ′′

32)⊂ (Z3, A). Since (W ′
13⊕W ′

23)⊂ Z3, then W ′
32 ⊂

(
Z3, (B⊕E)

)
and W ′′

31 ⊂
(
Z3, (D⊕E)

)
. Consequently, W3 ⊂ (Z3, X123) and all users can recon-

struct their requested file with the given server response.

Theorem 4.6.1 gives us an upper-bound on the memory-rate tradeoff for the

N = K = 3 case. Given that (M,R) = (1/3, 2) is achievable by [3], we know the

line connecting (M,R) = (1/3, 2) and (M,R) = (1/2, 5/3), i.e, 6M + 3R = 8, is

achievable for 1/3 ≤ M ≤ 1/2. Since, Tian proved the bound 6M + 3R ≥ 8 in
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[9] for N = K = 3, the memory-rate tradeoff is completely characterized with the

bound 6M+3R ≥ 8 when N = K = 3 and 1/3 ≤ M ≤ 1/2.

In [7], it is shown that (M,R) = (1, 1) is achievable for N = K = 3, given the

results of Theorem 4.6.1, it is likely that the other bound necessary to completely

characterize the memory-rate tradeoff is 4M + 3R ≥ 7 for 1/2 ≤ M ≤ 1. In Sec-

tion 4.9 we show the closest bound we are able to derive with a linear separation

assumption on the caches is 4M+3R ≥ 7− 1
6 .

4.7 A Discoordination Bound for N = K = 3
In this section we will prove a memory-rate bound for the linear coded caching

problem in the N = K = 3 case. This bounds involves a discoordination term and

can be considered an application of our work in Chapter 3 to the linear coded

caching problem.

Theorem 4.7.1. Consider the linear coded caching problem for N = K = 3 and

where F is finite. Then

2R+3M ≥ 5− 1
F

DisCoordavg(Wi,Wj,Zk), (4.7.1)

for i, j,k ∈ [3] and i ̸= j.

We organize this computation into a few lemmas.

Lemma 4.7.2. Consider the linear coded caching problem for N = K = 3 and

where F is finite. Then setting

P1 = (X123,Z1), P2 = (X213,Z2)

we have

2RF +3MF ≥ dim(P1)+dim(P2)+dim(Z3). (4.7.2)

Proof. We have

2RF +3MF ≥ dim(X123)+dim(Z1)+dim(X213)+dim(Z2)+dim(Z3).
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By the dimension formula

dim(X123)+dim(Z1)≥ dim(X123 +Z1) = dim(P1);

similarly

dim(X213)+dim(Z2)≥ dim(P2).

Combining the three equations displayed above yields the lemma.

We remark that (4.7.2) would hold with equality if we add dim(X123 ∩Z1) and

dim(X213 ∩Z2) to the right-hand-side.

Lemma 4.7.3. Consider the hypothesis and notation of Lemma 4.7.2. Then

2RF +3MF ≥ 4F +dimU/W1([P1]∩ [P2])+dimU((P1 +P2)∩Z3
)
. (4.7.3)

Proof. By the dimension formula,

dim(P1)+dim(P2) = dim(P1 +P2)+dim(P1 ∩P2),

then the right-hand-side of (4.7.2) can be written as

dim(P1 +P2 +Z3)+dim
(
(P1 +P2)∩Z3

)
+dim(P1 ∩P2).

But P1 +P2 +Z3 implies X123,Z1,Z2,Z3 whose sum is all of U . Hence

2RF +3MF ≥ 3F +dim
(
(P1 +P2)∩Z3

)
+dim(P1 ∩P2).

Since P1 and P2 both imply W1 we have

dim(P1 ∩P2) = dimU/W1([P1 ∩P2]W1)+dim(W1) = dimU/W1([P1]∩ [P2])+F,

and (4.7.3) follows.

Next we study the first term on the right-hand-side of (4.7.3).

97



Lemma 4.7.4. Consider the hypothesis and notation of Lemma 4.7.3. Then

dimU/W1([P1]∩ [P2]) = dimU/(W1+Z3)
(
[W3]

)
+ t1 + t2 −δ ,

where

δ = DisCoordU/W1([P1], [P2], [Z3]) (4.7.4)

and t1, t2 are the non-negative terms

t1 = dimU/(W1+W3+Z3)
(
[P1]∩ [P2]

)
, t2 = dimU/W1([P1]∩ [P2]∩ [Z3]).

In particular,

dimU/W1([P1]∩ [P2])≥ dimU/(W1+Z3)
(
[W3]

)
−δ . (4.7.5)

Proof. By Corollary 3.6.1 in the universe U/W1 and its three linear subspaces

[P1], [P2], [Z3], we have

dimU/W1([P1]∩ [P2]) =dimU/(W1+Z3)
(
[P1]∩ [P2]

)
+dimU/W2([P1]∩ [P2]∩ [Z3])

−DisCoordU/W1([P1], [P2], [Z3]).

Since both P1 and P2 contain W3 when given Z3 we have

[W3]W1+Z3 ⊂
(
[P1]W1+Z3 ∩ [P2]W1+Z3

)
,

hence

dimU/(W1+Z3)
(
[P1]∩ [P2]

)
= dimU/(W1+Z3)

(
[W3]

)
+dimU/(W3+W1+Z3)

(
[P1]∩ [P2]

)
.

The equality in the lemma follows.

Lemma 4.7.5. Consider the hypothesis and notation of Lemma 4.7.2. Then

2RF +3MF ≥ 5F +dimU/(W1+W2)
(
[(P1 +P2)∩Z3]

)
+dim(W2 ∩Z3)+ s1 + s2 −δ ,

(4.7.6)
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where δ is the discoordination term given in (4.7.4), and

s1 = dim(W1+W3+Z3)−dim(W1+W2+Z3), s2 = dim(W1∩Z3)−dim(W2∩Z3).

(4.7.7)

Note that for the term dimU/(W1+W2)
(
[(P1 +P2)∩ Z3]

)
, we first calculate the

intersection (P1 +P2)∩Z3 in U , and then consider the image of this intersection in

U/(W1+W2). This distinction is important, for instance, in the optimal scheme for

M = 1/3 (from [3]), the term equals 0, whereas the dimension of [P1 +P2]∩ [Z3] in

U/(W1 +W2) equals F/3.

We also remark that s1,s2 in (4.7.7) cancel under symmetrization.

Proof of Lemma 4.7.5. Consider the second term on the right-hand-side of (4.7.3):

since W1,W2 are both implied by P1 +P2 (since P1 +P2 contains X123,Z1,Z2), we

have

dim
(
(P1 +P2)∩Z3

)
= dim

(
(W1 +W2)∩Z3

)
+dimU/(W1+W2)

(
[(P1 +P2)∩Z3]

)
.

Combining this with Lemma 4.7.3 and Lemma 4.7.4, we have

2RF +3MF ≥4F +dimU/(W1+Z3)
(
[W3]

)
−δ

+dim
(
(W1 +W2)∩Z3

)
+dimU/(W1+W2)

(
[(P1 +P2)∩Z3]

)
.

(4.7.8)

Now we take two of the terms above and notice the following simplification (mod-

ulo s1, which drops out upon symmetrization):

dimU/(W1+Z3)
(
[W3]

)
= dim(W3 +W1 +Z3)−dim(W1 +Z3),

and

dim
(
(W1 +W2)∩Z3

)
= dim(W1 +W2)+dim(Z3)−dim(W1 +W2 +Z3),
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adding them we get

dimU/W1+Z3(W3)+dim
(
(W1 +W2)∩Z3

)
= s1 −dim(W1 +Z3)

+dim(W1 +W2)+dim(Z3).

But here dim(Z3)−dim(W1+Z3) = dim(W1∩Z3)−dim(W1) and dim(W1+W2) =

2F , then

dimU/(W1+Z3)
(
[W3]

)
+dim

(
(W1 +W2)∩Z3

)
= F + s1 +dim(W1 ∩Z3)

= F + s1 + s2 +dim(W2 ∩Z3).

Applying the above equality to (4.7.8) yields (4.7.6).

We can now prove the main result of this section.

Proof of Theorem 4.7.1. With notation as in Lemma 4.7.2, we will use (4.7.6) and

a seemingly crude bound on the discoordination that uses the Lifting Lemma. First

we recall the following equality from the proof of Lemma 4.7.5

dim
(
(P1 +P2)∩Z3

)
= dim

(
(W1 +W2)∩Z3

)
+dimU/(W1+W2)

(
[(P1 +P2)∩Z3]

)
.

Since W1 is implied by P1 +P2 we also have

dim
(
(P1 +P2)∩Z3

)
= dim(W1 ∩Z3)+dimU/W1

(
[(P1 +P2)∩Z3]

)
.

Hence,

dimU/W1
(
[(P1 +P2)∩Z3]

)
=dim

(
(W1 +W2)∩Z3

)
−dim(W1 ∩Z3)

+dimU/(W1+W2)
(
[(P1 +P2)∩Z3]

)
.

By (3.6.1) and since dim(W1 ∩W2) = 0 we have

dim
(
(W1 +W2)∩Z3

)
−dim(W1 ∩Z3) = DisCoord(W1,W2,Z3)+dim(W2 ∩Z3).
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Combining the above two bounds we get

dimU/W1
(
[(P1 +P2)∩Z3]

)
=DisCoord(W1,W2,Z3)+dim(W2 ∩Z3)

+dimU/(W1+W2)
(
[(P1 +P2)∩Z3]

)
.

(4.7.9)

Since W1 ⊂ (P1 ∩P2), by Theorem 3.1.8

δ = DisCoordU/W1([P1], [P2], [Z3]) = DisCoord(P1,P2,Z3).

By Theorem 3.1.4 and the Lifting Lemma (Lemma 3.4.2) we have

DisCoord(P1,P2,Z3) = dimU/S2
(
[P1 +P2]∩ [Z3]

)
= dimU/S2

(
[(P1 +P2)∩Z3]

)
for S2 = S2(P1,P2,Z3). Then W1 ⊂ (P1 ∩P2)⊂ S2, and we get

δ = dimU/S2
(
[(P1 +P2)∩Z3]

)
≤ dimU/W1

(
[(P1 +P2)∩Z3]

)
.

Combining the above inequality with (4.7.9) we get

dimU/W1+W2
(
[(P1 +P2)∩Z3]

)
+dim(W2 ∩Z3)−δ ≥−DisCoord(W1,W2,Z3),

which considering the notation and hypothesis of Lemma 4.7.5 leads to

2RF +3MF ≥ 5F + s1 + s2 −DisCoord(W1,W2,Z3). (4.7.10)

After symmetrization s1 and s2 equal zero and we get (4.7.1).

4.8 A Hybrid Rank Count and Tian’s Method
By definition of the linear coded caching problem, U has a decomposition

W1, . . . ,WN . Therefore, using Lemma 4.5.2 we know the structure of the caches

in the linear coded caching problem with N = K = 3.

There is a stronger remark we can make about the structure of the caches if

the Z’s are separated linear under a symmetric caching scheme8. In this case, F is

8Take an arbitrary scheme and form the symmetrized scheme that is K!N! = 36 times as long
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divisible by 3 and the files have a decomposition

W1 = A1A2A3, W2 = B1B2B3, W3 =C1C2C3, (4.8.1)

such that Ai,Bi,Ci are each linear subspaces of dimension F/3 in U and Zi is a lin-

ear subspace of Ui = Span(Ai,Bi,Ci) which trivially has a decomposition Ai,Bi,Ci.

Using Lemma 4.5.2 we get the following remark.

Remark 4.8.1. Consider the linear coded caching problem with N = K = 3 such

that the Zi are separated linear under a symmetric caching scheme, the files have

a decomposition as in (4.8.1), and Zi ⊂ Span(Ai,Bi,Ci). Then for each i ∈ [3] there

exist subspaces A j
i ,B

j
i ,C

j
i indexed on integers 1 ≤ j ≤ 5 such that

1. A1
i , . . . ,A

5
i are linearly independent subspaces that span Ai, as are

B1
i , . . . ,B

5
i ⊂ Bi and C1

i , . . . ,C
5
i ⊂ Ci with Span(B1

i , . . . ,B
5
i ) = Bi and

Span(C1
i , . . . ,C

5
i ) =Ci;

2. for some integers r1, . . . ,r5 such that r3 is even and

r1 + r2 + r3 + r4 + r5 = F/3, (4.8.2)

we have

dim(A j
i ) = dim(B j

i ) = dim(C j
i ) = r j,

for each j ∈ [5].

3. Let A3
i = A

′3
i A

′′3
i where dim(A

′3
i ) = dim(A

′′3
i ) = r3/2 and define a similar

decomposition for B3
i and C3

i , then Zi is spanned by:

• A1
i +B1

i +C1
i (an individual scheme of size 3r1 bits);

• A2
i ⊕B2

i , B2
i ⊕C2

i (a Tian scheme of size 2r2 bits);

• A
′3
i ⊕B

′3
i , A

′′3
i ⊕C

′3
i , B

′′3
i ⊕C

′′3
i (a symmetric two-way scheme of size

3
2 r3 bits); and

• A4
i ⊕B4

i ⊕C4
i (a triple scheme of size r4 bits).

(see Section 4.4.2).
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4. for each i ∈ [3],

dim(Zi) = MF = 3r1 +2r2 +
3
2

r3 + r4. (4.8.3)

Note that in Remark 4.8.1, A5
i is all the “leftovers” in Ai not spanned by

A1
i ,A

2
i ,A

3
i ,A

4
i . A similar statement holds for B5

i and C5
i . Since A5

i ,B
5
i ,C

5
i are disjoint

from Zi they can be considered as the parts of Ui “ignored” by Zi.

Notice that if we choose a single scheme above, i.e., r j = F/3 for only one

value of j ∈ [5], then

• If r1 = F/3, i.e., we use a pure individual scheme, then M = 1 and R = 1 by

[7]. This scheme is optimal by the bound 2M+3R ≥ 5 shown in [9, 10].

• If r3 = F/3, i.e., we use a pure symmetric two-way scheme, then M = 1/2

and R = 5/3 by Theorem 4.6.1. This scheme is optimal since 2R+ 3M ≥
5−1/6 by (4.8.4).

• If r4 = F/3, i.e., we use a pure triple scheme, then M = 1/3 and R = 2 by

[3]. This scheme is optimal by the trivial bound 3M+R ≥ 3.

• If r2 =F/3, i.e., we use a pure Tian scheme, then M = 2/3 and (assuming the

scheme is separated) Theorem 4.3.3 shows that 2R+3M ≥ 5. This, R ≥ 3/2,

which is worse than a convex combination of (1/2, 5/3) of (1,1) which gives

(2/3, 13/9).

In other words, we know that three of the pure schemes above are optimal, and the

pure Tian scheme cannot do as well as a convex combination of a pure individual

scheme and a pure symmetric two-way scheme.

By applying Theorem 4.7.1 to the Zi in the context of Remark 4.8.1 we are able

to drive a new lower bound for the memory-rate tradeoff.

Corollary 4.8.2. For the linear coded caching problem with N = K = 3 and sepa-

rated linear caches, with integers r2 and r3 as in Remark 4.8.1,

3MF +2RF ≥ 5F − r2 −
r3

2
. (4.8.4)
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Proof. It is enough to directly use (4.7.10) from the proof of Theorem 4.7.1, which

gives

3MF +2RF ≥ 5F +dim(A+C+Z3)−dim(A+B+Z3)

+dim(A∩Z3)−dim(B∩Z3)−DisCoord(A,B,Z3).

Since we are considering a symmetric caching scheme and by Corollary 3.1.7 the

bound reduces to

3MF +2RF ≥ 5F −dim
(
(A+Z3)∩ (B+Z3)

)
+dim(Z3).

By Remark 4.8.1, (A+Z3)∩ (B+Z3) = Z3 +A2
3 +A

′3
3 and hence

3MF +2RF ≥ 5F −dim(Z3)−dim(A2
3)−dim(A

′3
3 )+dim(Z3).

Given that dim(A2
3) = r2 and dim(A

′3
3 ) =

1
2 r3, (4.8.4) follows.

Using a combination of Tian’s argument from Theorem 4.3.3 and a matrix rank

argument, we get a new memory-rate bound. This is the main computation of this

Section.

Theorem 4.8.3. For the linear coded caching problem with N = K = 3 and sepa-

rated linear caches, with integers r3 and r5 as in Remark 4.8.1 we have,

3MF +2RF ≥ 5F − 3
2

r3 +3r5. (4.8.5)

Note that, unlike (4.8.4), the bound above is not tight for r3 = F/3 (i.e. a pure

symmetric two-way scheme).

Our proof for Theorem 4.8.3 is similar to Tian’s argument for Theorem 4.3.3.

However, we need to do some “preprocessing” of the analog of the matrix G in

our proof of Theorem 4.3.3 that was given in Section 4.3. Consider a pure triple

scheme, meaning r4 = F/3 and r j = 0 for all other j ∈ [5]. Mimicking the proof of

Theorem 4.3.3, we see that X123 +Z1 contains the subspaces A1,A2,A3,(B1 ⊕C1),
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and hence the matrices in (4.3.3) and (4.3.4) are at most of rank

(M+R′−4/3)F,

and conclude that

R′ ≤ 3(M+R′−4/3)F,

which gives the bound 2R′ + 3M ≥ 4. Furthermore, if r5 = F/3, meaning each

Zi = 0, this type of argument would show

R′ ≤ 3(M+R′−3/3)F

and hence 2R′+3M ≥ 3. Similarly, for general r1, . . . ,r5, this method would show

R′F ≤ 3(MF +R′F −F −2r1 −2r2 −
3
2

r3 − r4),

which yields the lower bound

2R′F +3MF ≥ 5F − 3
2

r3 −3r4 −6r5.

A better approach will be a “hybrid” approach. First, we directly reason about the

matrix G whose row space equals ι(X123), namely about its parts corresponding to

the A4
i ,B

4
i ,C

4
i and the A5

i ,B
5
i ,C

5
i for i ∈ [3]. Then, we apply Tian’s method to the

remaining parts of G.

Proof of Theorem 4.8.3. Similar to the proof of Theorem 4.3.3, let us specify a

basis for W = W1 +W2 +W3. Consider a basis, W , for W consisting of five parts

based on the decomposition of the Zi in Remark 4.8.1. Note that

W =
5

∑
j=1

( 3

∑
i=1

(A j
i +B j

i +C j
i )
)
.

For each i ∈ [3] and j = 1,2,5, let A j
i be a basis for A j

i , and let A j be the union of

A j
1,A

j
2,A

j
3. Similarly for B or C replacing A and B or C replacing A everywhere.
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Let W j be the union of A j,B j,C j, so that we have

W j =
⋃

i∈[3]
A j

i ∪B j
i ∪C j

i for all j = 1,2,5.

For each i ∈ [3], let A′3
i and A′′3

i be arbitrary bases of A
′3
i and A

′′3
i , respectively. Let

A3
i be the union of A′3

i and A′′3
i and let A3 be the union of the A3

i . Similarly for B
or C replacing A and B or C replacing A everywhere. Now, let W3 be the union of

A3,B3,C3, so that we have

W3 =
⋃

i∈[3]
A′3

i ∪A′′3
i ∪B′3

i ∪B′′3
i ∪C ′3

i ∪C ′′3
i .

For j = 4 we take a different approach; for each i ∈ [3], let A4
i ,B4

i respectively be

arbitrary bases for A4
i ,B

4
i , and let C̃4

i be an arbitrary basis for A4
i ⊕B4

i ⊕C4
i (recall

the meaning of A4
i ⊕B4

i ⊕C4
i from Definition 4.5.1). Let A4 be the union of the A4

i ,

and similarly for B4 and C̃4. Let W4 be the union of these sets, then we have

W4 =
( ⋃

i∈[3]
A4

i ∪B4
i

)
∪

( ⋃
i∈[3]

C̃4
i

)
.

Finally, let W be the union of the W j, which for block purposes we arrange in the

order W1, . . . ,W5, so

W = W1 ∪W2 ∪W3 ∪W4 ∪W5.

As in the proof of Theorem 4.3.3, this basis W of W gives an isomorphism

ι = ιW : W → F3F with F= Z/2Z.

Note that for each i ∈ [3], the vectors in ι(Zi) have zeros in all their components

corresponding to the basis elements in all W5, and of those in A4 and B4.

Let us describe a set of vectors in X123 that are linearly independent; their span

will be a subspace of X123, namely X̂123. Our goal is to describe vectors such that

ι(X̂123) has a convenient form which will be exploited and enables us to employ a

hybrid strategy.
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Consider any basis vector a∈A5
1. Since user 1 must be able to infer a from X123

and Z1, we have a = x+z where x ∈ X123 and z ∈ Z1. It follows that −x = a−z, and

hence ι(−x)—viewed as a block vector that breaks the basis W into its W1, . . . ,W5

blocks—is of the form: [
ℓ1 ℓ2 ℓ3 ℓ4 er

]
,

where er is one of the standard basis vectors in the W5 block (in particular, in the

A5
1 part of W5), and where the −ℓ j corresponds to the part of ι(z) in the W j block

of the basis W; furthermore, as remarked before, ℓ4 has zeros in the components

corresponding to vectors in A4 and B4.

Doing this for each basis vector in A5
1, and similarly for the rest of the basis

vectors in W5 we get a set of vectors in X123 whose image under ι , when arranged

as row vectors, yields a block matrix of the form:[
L1 L2 L3 L4 I

]
, (4.8.6)

where I is a 9r5F ×9r5F identity matrix, and for j ∈ [4], L j is a block matrix with

9r5F rows. These rows are linearly independent because of the I in the block form

above.

Now, note that user 1 can infer each element, a ∈ A4
i with i ∈ [3] from Z1 and

X123. Therefore, a = z+ x with z ∈ Z1 and x ∈ X123, hence ι(x) = ι(a)− ι(z) gives

us vectors of the form [
ℓ1 ℓ2 ℓ3 er + ℓ4 0W5

]
,

where er is the standard basis vector corresponding to a ∈ A4, 0W5 are the zeros

for components corresponding to W5, and the ℓ j result from −ι(z). Observe that

ℓ4 has zero components in the positions corresponding to A4 and B4, only possibly

nonzero in those components corresponding to C̃4. Doing the same for all b ∈ B4
i

with i ∈ [3], we get elements of X123 such that ι of these elements, arranged as row

vectors, is of the form [
P1 P2 P3 Q′ I 0

]
(4.8.7)
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where 0 is a zero matrix of size 6r4 × 9r5 columns and I in the block an identity

matrix of size 6r4 × 6r4, and Q′ is the matrix of components corresponding to

elements of C̃4.

All the rows of the matrices in (4.8.7) and (4.8.6) are linearly independent with

the following argument: when we combine these matrices we get a matrix[
P1 P2 P3 Q′ I 0

L1 L2 L3 L4 I

]
. (4.8.8)

L4 is equivalent to [Q 0] where 0 is a zero matrix of size 9r5 × 6r4 and Q is

the matrix of components corresponding to elements of C̃4, since the Zi have zero

components corresponding to elements of A4 and B4. Hence we get a block matrix[
P1 P2 P3 Q′ I 0

L1 L2 L3 Q 0 I

]
, (4.8.9)

whose two right-most columns give a (6r4 +9r5)× (6r4 +9r5) identity matrix.

At this point we have identified a subspace X ′
123 of X123, and a basis of X ′

123,

whose image under ι , viewed as row vectors, equals the block matrix in (4.8.9).

Now list all of the vectors in W1 ∪W2 ∪W3 as a sequence in any order

v1, . . . ,vm

(note that here the subscripts do not refer to a scheme or a user). Each vk = xk + zk

for some xk ∈ X123 and zk ∈ Z1 ∪Z2 ∪Z3. Let

X̂123 = X ′
123 +Span(x1, . . . ,xm).

Now we create a matrix whose rowspace equals ι(X̂123) as follows: we begin with

the matrix in (4.8.9) and for k ∈ [m] we add a row for each xk such that

xk /∈ X ′
123 +Span(x1, . . . ,xk−1)

using the same idea as before. Since −xk = vk − zk, we add the row ι(−xk) =
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ι(vk)− ι(zk) which has the form[
ℓ1 ℓ2 ℓ3 ℓ4 0A4,B4 0W5

]
,

where ℓ4 corresponds to the C̃4 part, and the subscripts on the 0’s indicate the

zeros corresponding to the A4,B4 and W5 components. Adding all such vectors

xk to obtain X̂123 we have that ι(X̂123), viewed as row vectors, is the rowspace of a

matrix

G =

G
′′1 G

′′2 G
′′3 Q′′ 0 0

P1 P2 P3 Q′ I 0

L1 L2 L3 Q 0 I

 . (4.8.10)

Setting

G′′ =
[
G

′′1 G
′′2 G

′′3
]
,

we have

FR ≥ dim(X123)≥ dim(X̂123) = Rank(G),

where

Rank(G) = Rank([G′′ Q′′])+6r4 +9r5 ≥ Rank(G′′)+6r4 +9r5,

and hence

RF ≥ R′′F +6r4 +9r5, where R′′F = Rank(G′′). (4.8.11)

Our aim is to apply Tian’s argument from Theorem 4.3.3 to G′′. To do so, first

we claim that

ι

(
Span(x1, . . . ,xm)

)
lies entirely in the rowspace of [G′′ Q′′ 0 0]. Each xk with

xk /∈ X ′
123 +Span(x1, . . . ,xk−1)

has ι(xk) as one of the rows of [G′′ Q′′ 0 0], by our construction above. How-

ever, if

xk ∈ X ′
123 +Span(x1, . . . ,xk−1)
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then ι(xk) lies in some combination of the rowspace of G in (4.8.10). But since

xk = vk − zk, then xk has zero components in positions corresponding to A4,B4 and

W5; but since the two last columns of G are0 0

I 0

0 I

 ,
and vk corresponds to a vector in one of W1,W2,W3, we have that ι(xk) = ι(vk)−
ι(zk) has zero component in the positions corresponding to A4,B4 and W5. Hence

ι(xk), which is a linear combination of rows in G, cannot involve the bottom two

rows blocks, which correspond to ι(X ′
123).

Now we know

ι

(
Span(x1, . . . ,xm)

)
= Rowspace

(
[G′′ Q′′ 0 0]

)
.

Consider the special case where all the vectors in C̃4 = 0, i.e., A4
i ⊕B4

i ⊕C4
i = 0

and Zi = Z′′
i = Zi∩Span(W1∪W2∪W3) for all i ∈ [3]. In this special case, user 1

can reconstruct A j
i for all j, i ∈ [3] and we may set Q′′ = 0. Since each vector in A j

i

occurs in the sequence v1, . . . ,vm, we may compute the same values of v1, . . . ,vm

with Q′′ = 0; we can replace x1, . . . ,xm with the vectors x′′1 , . . . ,x
′′
m obtained by

discarding the C̃4 components of x1, . . . ,xm and still get a scheme that allows users

to reconstruct the W1,W2,W3 parts of their files; where the total memory user i

needs to do this is

dim(Z′′
i ) = M′′F = MF − r4.

Additionally, the dimension of

X ′′
123 = Span(x′′1 , . . . ,x

′′
m),

which equals R′′F = Rank(G′′).

Now we apply the same argument as in Theorem 4.3.3, to conclude that the
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span of the columns of G′′ corresponding to B j
2,B

j
3,C

j
2,C

j
3 for all j ∈ [3] is at most

M′′F +R′′F −5r1 −5r2 −
9
2

r3.

Applying the same argument for Z2 and Z3 replacing Z1, we conclude

R′′F ≤ 3(M′′F +R′′F −5r1 −5r2 −
9
2

r3),

and hence

3M′′F +2R′′F ≥ 15r1 +15r2 +
27
2

r3.

Using (4.8.11) and the fact that MF = M′′F + r4 we have

3MF +2RF ≥ 3(M′′F + r4)+2(R′′F +6r4 +9r5)

≥ 15r1 +15r2 +
27
2

r3 +15r4 +18r5

≥ 15(r1 + r2 + r3 + r4 + r5)−
3
2

r3 +3r5.

Since ∑
5
i=1 ri = F/3, we conclude

3MF +2RF ≥ 5F − 3
2

r3 +3r5.

4.9 Better Bounds and a Few Conjectures

4.9.1 Bounds

We can drive new bounds for the linear coded caching problem with separated

caches using Remark 4.8.1, Corollary 4.8.2, and Theorem 4.8.3.

Corollary 4.9.1. In the linear coded caching problem with N = K = 3 and sepa-

rated linear caches we have

6M+5R ≥ 11.

Proof. To obtain this corollary we add (4.8.5) to 3/2 times (4.8.4) and add the
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result to 3/2 times (4.8.3) plus −9/2 times (4.8.2) which yields

5RF +6MF ≥ 11F +3r4 +5r5.

Similar to how the bound in this corollary was obtained, with a different com-

bination of (4.8.5), (4.8.4), (4.8.3), and (4.8.2) we can also show

2R+3M ≥ 5− 1
4
, and 3R+4M ≥ 7− 1

6
.

With the linearity and separation assumptions we improve Tian’s bounds

(which were 2R+ 3M ≥ 5− 1
3 and 3R+ 4M ≥ 7− 1

3 ) but we are unable to show

3R+4M ≥ 7.

The bound in Corollary 4.9.1 gives a slight improvement to Tian’s bound R+

M ≥ 2, as both pass through the achievable point (M,R) = (1,1); however, the

bound in Corollary 4.9.1 assumes that the caching scheme is separated linear; by

contrast, Tian’s bound is valid for any scheme, including non-linear schemes.

We remark that Tian’s bound R+M ≥ 2 has a short proof. In the context of the

linear coded caching problem, R+M ≥ 2 follows from the fact that

(2R+2M)F ≥ dim(X123 +Z1)+dim(X213 +Z2),

which by the dimension formula equals

dim(X123 +Z1 +X213 +Z2)+dim
(
(X123 +Z1)∩ (X213 +Z2)

)
,

where the first dimension equals 3F , and the second dimension is at least that of

W1, namely F . For non-linear schemes this proof still holds, since the above lower

bound on 2R+2M becomes

H(X123,Z1,X213,Z2)+ I
(
(X123 +Z1);(X213 +Z2)

)
,

which is bounded below by 3F +F , using the fact that the two-way mutual infor-

mation, I(X ;Y ), of random variables X and Y is bounded from below by H(Z) for
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any Z that is implied by both X and Y .

4.9.2 Conjectures

We make the following conjectures:

1. One can improve the bound in Theorem 4.8.3 to

2RF +3MF ≥ 5F − (1/2)r3 +3r6,

which would be tight for (M,R) = (1/2, 5/3), and would then imply that

no separated linear scheme can improve upon a convex combination of the

scheme achieving (M,R) = (1/2,5/3) and the scheme achieving (M,R) =

(1,1).

2. Any optimal linear scheme is separated.

3. Recall, the line connecting (M,R) = (1/2,5/3) and (M,R) = (1,1) is 4M+

3R = 7; we conjecture than

4M+3R ≥ 7

holds for all 1/2 ≤ M ≤ 1 under any linear caching scheme.

Our difficulty in attacking either conjecture (1) or (2) is the possible ways in

which the Xi jk can involve XORs of the bits in A j
i ,B

j
i ,C

j
i over different values of

j ∈ [4].

If conjecture (3) is shown, then 4M+3R ≥ 7 holds for all schemes unless there

is a non-linear scheme which improves upon this (we do not particularly conjecture

one way or another on the existence of such a non-linear scheme).
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Chapter 5

Conclusion

5.1 Conclusion
In this thesis, we begin by formalizing linear information theory; what are the lin-

earity assumptions that allow us to represent the entropy of a random variable as

the dimension of a linear subspace in some universe? In other words, what is a lin-

ear random variable? We discuss the notion of “coordination of linear subspaces”

and define “discoordination” as a measure of the extent to which linear subspaces

fail to be coordinated. After that, we generalize the proof of the dimension for-

mula to quasi-increasing sequences of linear subspaces. Next, building upon our

coordination results, we derive a closed-form expression for the discoordination of

a collection of subspaces. Exploiting the peculiar properties of coordinating three

linear subspaces, we show different (more useful) equalities involving the discoor-

dination of three subspaces.

Then we move on to the coded caching problem. After formally defining the

problem, we review the relevant literature and related results. We define linear

coded caching and restate one of Tian’s ideas from [9] as Theorem 4.3.3; we ex-

tend this idea to get a different lower bound for the memory-rate tradeoff. Fur-

thermore, we completely characterize the memory rate tradeoff for N = K = 3 and

1/3 ≤ M ≤ 1/2 by defining a new caching scheme that achieves the memory rate

pair (M, R) = (1/2,5/3). Using our results in linear information theory, we de-

rive a lower bound for the memory-rate tradeoff involving a discoordination term.
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Combing our bounds we show 5R+ 6M ≥ 11 for the linear coded caching prob-

lem with N = K = 3; this bound is an improvement on Tian’s bound of R+M ≥ 2,

however our bound assumes the random variables in the coded caching problem are

linear. All the new lower bounds on the memory-rate tradeoff in this thesis were,

in effect, the result of a linear-algebraic approach to the coded caching problem.

5.2 Future Work
It is intriguing to know if one can define concepts analogous to discoordination

for non-linear random variables and obtain our results without the linearity as-

sumption. Coordinating four or more linear subspaces is much more complicated

(see remark after Theorem 3.3.10) and there might not even be a decomposition

result similar to that of Theorem 3.1.4. Therefore, finding a relation between

DisCoord(U1, . . . ,Um), dim(U1 ∩ . . .∩Um), and I(U1; . . . ;Um) for m ≥ 4 is of great

interest.

We conjectured that 4M + 3R ≥ 7 will completely characterize the memory-

rate tradeoff in the linear coded caching problem for the N = K = 3 case and 1/2 ≤
M ≤ 1. Needless to say, our (possible) continuation of this work should address

this conjecture. Naturally, all the conjectures in Subsection 4.9.2 are good places

to extend this work.

Our work demonstrated the application of linear information theory to the

coded caching problem; another direction for future work can involve finding other

applications of linear information theory.

5.3 Final Remarks
In writing this thesis, I read many others. Justifiably, one common trend in all of

them was a lack of personal context. A master’s thesis in computer science is likely

a survey of research done over one or two years and reads more like an information

dump rather than a story. I thought it’s worth writing a couple of words in an

attempt to give the story behind this work, so there is some idea of how this work

came together and what the author thought of it.

Joel Friedman introduced me to the coded caching problem in late September
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2020 after he attended the dissertation defense of Ali Saberali1 as an examiner.

Joel saw that characterizing the memory-rate tradeoff was an open problem, even

for the small case with three users and three files. For the next couple of months,

we reviewed the literature and attempted numerous unsuccessful approaches to

tackling the problem. In early 2021, Joel came up with “discoordination”, and by

March we had more or less shown the theorems in Chapter 3 of this work. During

the summer, I wrote the argument which appears in Section 4.7. Initially, there

was a mistake in the argument which we didn’t catch and led us to believe that we

proved 3M+2R ≥ 5. We found the mistake in yearly 2022 and fixed the argument.

This led to all the sections in Chapter 4 related to Tian’s work in [9].

My experience during my time as a graduate student was somewhat similar to

that of Aegeus, following his son’s (Theseus) departure to Crete. The imagery was

eloquently put in [5] by Stephen Fry, where it’s said: Aegeus had stood patiently

every day on the cliffs overlooking the sea bearing his name, waiting for a sight of

his son’s ship. I don’t relate my research experience to the tragic end of Aegeus,

but his routine. Research can be a lot like standing on a cliff looking at the horizon

for a ship. But with the promise that you return to stand on the same cliff the next

day and all days after that to look upon the horizon until you spot the ship you

want (the one with the white sails). This work is the result of patience as much as

it is the result of effort. It’s the result of persistence and trust as it’s the result of

knowledge and guidance. I’m happy with the ship I saw at the end of my routine,

and I thank you, the reader, for being a part of it.

1Incidentally, one of the examiners of this thesis, Sathish Gopalakrishnan, was also an examiner
of Saberali’s dissertation (see [8]). In one of our meetings, Sathish kindly shared with me a very
intriguing problem related to coded caching inspired by Saberali’s work. We noted how he and Joel
came up completely different questions (!) after examining the same work.
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